4,008 research outputs found

    Efficient Deformable Shape Correspondence via Kernel Matching

    Full text link
    We present a method to match three dimensional shapes under non-isometric deformations, topology changes and partiality. We formulate the problem as matching between a set of pair-wise and point-wise descriptors, imposing a continuity prior on the mapping, and propose a projected descent optimization procedure inspired by difference of convex functions (DC) programming. Surprisingly, in spite of the highly non-convex nature of the resulting quadratic assignment problem, our method converges to a semantically meaningful and continuous mapping in most of our experiments, and scales well. We provide preliminary theoretical analysis and several interpretations of the method.Comment: Accepted for oral presentation at 3DV 2017, including supplementary materia

    View subspaces for indexing and retrieval of 3D models

    Full text link
    View-based indexing schemes for 3D object retrieval are gaining popularity since they provide good retrieval results. These schemes are coherent with the theory that humans recognize objects based on their 2D appearances. The viewbased techniques also allow users to search with various queries such as binary images, range images and even 2D sketches. The previous view-based techniques use classical 2D shape descriptors such as Fourier invariants, Zernike moments, Scale Invariant Feature Transform-based local features and 2D Digital Fourier Transform coefficients. These methods describe each object independent of others. In this work, we explore data driven subspace models, such as Principal Component Analysis, Independent Component Analysis and Nonnegative Matrix Factorization to describe the shape information of the views. We treat the depth images obtained from various points of the view sphere as 2D intensity images and train a subspace to extract the inherent structure of the views within a database. We also show the benefit of categorizing shapes according to their eigenvalue spread. Both the shape categorization and data-driven feature set conjectures are tested on the PSB database and compared with the competitor view-based 3D shape retrieval algorithmsComment: Three-Dimensional Image Processing (3DIP) and Applications (Proceedings Volume) Proceedings of SPIE Volume: 7526 Editor(s): Atilla M. Baskurt ISBN: 9780819479198 Date: 2 February 201

    Intrinsic Inference on the Mean Geodesic of Planar Shapes and Tree Discrimination by Leaf Growth

    Full text link
    For planar landmark based shapes, taking into account the non-Euclidean geometry of the shape space, a statistical test for a common mean first geodesic principal component (GPC) is devised. It rests on one of two asymptotic scenarios, both of which are identical in a Euclidean geometry. For both scenarios, strong consistency and central limit theorems are established, along with an algorithm for the computation of a Ziezold mean geodesic. In application, this allows to verify the geodesic hypothesis for leaf growth of Canadian black poplars and to discriminate genetically different trees by observations of leaf shape growth over brief time intervals. With a test based on Procrustes tangent space coordinates, not involving the shape space's curvature, neither can be achieved.Comment: 28 pages, 4 figure

    Salient Local 3D Features for 3D Shape Retrieval

    Full text link
    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.Comment: Three-Dimensional Imaging, Interaction, and Measurement. Edited by Beraldin, J. Angelo; Cheok, Geraldine S.; McCarthy, Michael B.; Neuschaefer-Rube, Ulrich; Baskurt, Atilla M.; McDowall, Ian E.; Dolinsky, Margaret. Proceedings of the SPIE, Volume 7864, pp. 78640S-78640S-8 (2011). Conference Location: San Francisco Airport, California, USA ISBN: 9780819484017 Date: 10 March 201
    corecore