158 research outputs found

    Improving Image Classification with Location Context

    Full text link
    With the widespread availability of cellphones and cameras that have GPS capabilities, it is common for images being uploaded to the Internet today to have GPS coordinates associated with them. In addition to research that tries to predict GPS coordinates from visual features, this also opens up the door to problems that are conditioned on the availability of GPS coordinates. In this work, we tackle the problem of performing image classification with location context, in which we are given the GPS coordinates for images in both the train and test phases. We explore different ways of encoding and extracting features from the GPS coordinates, and show how to naturally incorporate these features into a Convolutional Neural Network (CNN), the current state-of-the-art for most image classification and recognition problems. We also show how it is possible to simultaneously learn the optimal pooling radii for a subset of our features within the CNN framework. To evaluate our model and to help promote research in this area, we identify a set of location-sensitive concepts and annotate a subset of the Yahoo Flickr Creative Commons 100M dataset that has GPS coordinates with these concepts, which we make publicly available. By leveraging location context, we are able to achieve almost a 7% gain in mean average precision

    Building detection in very high resolution multispectral data with deep learning features

    Get PDF
    International audienceThe automated man-made object detection and building extraction from single satellite images is, still, one of the most challenging tasks for various urban planning and monitoring engineering applications. To this end, in this paper we propose an automated building detection framework from very high resolution remote sensing data based on deep convolu-tional neural networks. The core of the developed method is based on a supervised classification procedure employing a very large training dataset. An MRF model is then responsible for obtaining the optimal labels regarding the detection of scene buildings. The experimental results and the performed quantitative validation indicate the quite promising potentials of the developed approach

    Attention-based Pyramid Aggregation Network for Visual Place Recognition

    Full text link
    Visual place recognition is challenging in the urban environment and is usually viewed as a large scale image retrieval task. The intrinsic challenges in place recognition exist that the confusing objects such as cars and trees frequently occur in the complex urban scene, and buildings with repetitive structures may cause over-counting and the burstiness problem degrading the image representations. To address these problems, we present an Attention-based Pyramid Aggregation Network (APANet), which is trained in an end-to-end manner for place recognition. One main component of APANet, the spatial pyramid pooling, can effectively encode the multi-size buildings containing geo-information. The other one, the attention block, is adopted as a region evaluator for suppressing the confusing regional features while highlighting the discriminative ones. When testing, we further propose a simple yet effective PCA power whitening strategy, which significantly improves the widely used PCA whitening by reasonably limiting the impact of over-counting. Experimental evaluations demonstrate that the proposed APANet outperforms the state-of-the-art methods on two place recognition benchmarks, and generalizes well on standard image retrieval datasets.Comment: Accepted to ACM Multimedia 201

    Stochastic Attraction-Repulsion Embedding for Large Scale Image Localization

    Full text link
    This paper tackles the problem of large-scale image-based localization (IBL) where the spatial location of a query image is determined by finding out the most similar reference images in a large database. For solving this problem, a critical task is to learn discriminative image representation that captures informative information relevant for localization. We propose a novel representation learning method having higher location-discriminating power. It provides the following contributions: 1) we represent a place (location) as a set of exemplar images depicting the same landmarks and aim to maximize similarities among intra-place images while minimizing similarities among inter-place images; 2) we model a similarity measure as a probability distribution on L_2-metric distances between intra-place and inter-place image representations; 3) we propose a new Stochastic Attraction and Repulsion Embedding (SARE) loss function minimizing the KL divergence between the learned and the actual probability distributions; 4) we give theoretical comparisons between SARE, triplet ranking and contrastive losses. It provides insights into why SARE is better by analyzing gradients. Our SARE loss is easy to implement and pluggable to any CNN. Experiments show that our proposed method improves the localization performance on standard benchmarks by a large margin. Demonstrating the broad applicability of our method, we obtained the third place out of 209 teams in the 2018 Google Landmark Retrieval Challenge. Our code and model are available at https://github.com/Liumouliu/deepIBL.Comment: ICC

    A deep learning-based approach for defect classification with context information in semiconductor manufacturing

    Get PDF
    This thesis presents some methodological and experimental contributions to a deep learning-based approach for the automatic classifi cation of microscopic defects in silicon wafers with context information. Canonical image classifi cation approaches have the limitation of utilizing only the information contained in the images. This work overcomes this limitation by using some context information about the defects to improve the current automatic classifi cation system

    Road Segmentation for Remote Sensing Images using Adversarial Spatial Pyramid Networks

    Full text link
    Road extraction in remote sensing images is of great importance for a wide range of applications. Because of the complex background, and high density, most of the existing methods fail to accurately extract a road network that appears correct and complete. Moreover, they suffer from either insufficient training data or high costs of manual annotation. To address these problems, we introduce a new model to apply structured domain adaption for synthetic image generation and road segmentation. We incorporate a feature pyramid network into generative adversarial networks to minimize the difference between the source and target domains. A generator is learned to produce quality synthetic images, and the discriminator attempts to distinguish them. We also propose a feature pyramid network that improves the performance of the proposed model by extracting effective features from all the layers of the network for describing different scales objects. Indeed, a novel scale-wise architecture is introduced to learn from the multi-level feature maps and improve the semantics of the features. For optimization, the model is trained by a joint reconstruction loss function, which minimizes the difference between the fake images and the real ones. A wide range of experiments on three datasets prove the superior performance of the proposed approach in terms of accuracy and efficiency. In particular, our model achieves state-of-the-art 78.86 IOU on the Massachusetts dataset with 14.89M parameters and 86.78B FLOPs, with 4x fewer FLOPs but higher accuracy (+3.47% IOU) than the top performer among state-of-the-art approaches used in the evaluation
    • …
    corecore