55 research outputs found

    Soft information for localization-of-things

    Get PDF
    Location awareness is vital for emerging Internetof- Things applications and opens a new era for Localizationof- Things. This paper first reviews the classical localization techniques based on single-value metrics, such as range and angle estimates, and on fixed measurement models, such as Gaussian distributions with mean equal to the true value of the metric. Then, it presents a new localization approach based on soft information (SI) extracted from intra- and inter-node measurements, as well as from contextual data. In particular, efficient techniques for learning and fusing different kinds of SI are described. Case studies are presented for two scenarios in which sensing measurements are based on: 1) noisy features and non-line-of-sight detector outputs and 2) IEEE 802.15.4a standard. The results show that SI-based localization is highly efficient, can significantly outperform classical techniques, and provides robustness to harsh propagation conditions.RYC-2016-1938

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensingโ€“analysisโ€“control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Automatic Wi-Fi Fingerprint System based on Unsupervised Learning

    Get PDF
    Recently, smartphones and Wi-Fi appliances have been generalized in daily life, and location-based service(LBS) has gradually been extended to indoor environments. Unlike outdoor positioning, which is typically handled by the global positioning system(GPS), indoor positioning technologies for providing LBSs have been studied with algorithms using various short-range wireless communications such as Wi-Fi, Ultra-wideband, Bluetooth, etc. Fingerprint-based positioning technology, a representative indoor LBS, estimates user locations using the received signal strength indicator(RSSI), indicating the relative transmission power of the access point(AP). Therefore, a fingerprint-based algorithm has the advantage of being robust to distorted wireless environments, such as radio wave reflections and refractions, compared to the time-of-arrival(TOA) method for non-line-of-sight(NLOS), where many obstacles exist. Fingerprint is divided into a training phase in which a radio map is generated by measuring the RSSIs of all indoor APs and positioning phase in which the positions of users are estimated by comparing the RSSIs of the generated radio map in real-time. In the training phase, the user collects the RSSIs of all APs measured at reference points set at regular intervals of 2 to 3m, creating a radio map. In the positioning phase, the reference point, which is most similar to the RSSI, compares the generated radio map from the training phase to the RSSI measured from user movements. This estimates the real-time indoor position. Fingerprint algorithms based on supervised and semi-supervised learning such as support vector machines and principal component analysis are essential for measuring the RSSIs in all indoor areas to produce a radio map. As the building size and the complexity of structures increases, the amount of work and time required also increase. The radio map generation algorithm that uses channel modeling does not require direct measurement, but it requires considerable effort because of building material, three-dimensional reflection coefficient, and numerical modeling of all obstacles. To overcome these problems, this thesis proposes an automatic Wi-Fi fingerprint system that combines an unsupervised dual radio mapping(UDRM) algorithm that reduces the time taken to acquire Wi-Fi signals and leverages an indoor environment with a minimum description length principle(MDLP)-based radio map feedback(RMF) algorithm to simultaneously optimize and update the radio map. The proposed UDRM algorithm in the training phase generates a radio map of the entire building based on the measured radio map of one reference floor by selectively applying the autoencoder and the generative adversarial network(GAN) according to the spatial structures. The proposed learning-based UDRM algorithm does not require labeled data, which is essential for supervised and semi-supervised learning algorithms. It has a relatively low dependency on RSSI datasets. Additionally, it has a high accuracy of radio map prediction than existing models because it learns the indoor environment simultaneously via a indoor two-dimensional map(2-D map). The produced radio map is used to estimate the real-time positioning of users in the positioning phase. Simultaneously, the proposed MDLP-based RMF algorithm analyzes the distribution characteristics of the RSSIs of newly measured APs and feeds the analyzed results back to the radio map. The MDLP, which is applied to the proposed algorithm, improves the performance of the positioning and optimizes the size of the radio map by preventing the indefinite update of the RSSI and by updating the newly added APs to the radio map. The proposed algorithm is compared with a real measurement-based radio map, confirming the high stability and accuracy of the proposed fingerprint system. Additionally, by generating a radio map of indoor areas with different structures, the proposed system is shown to be robust against the change in indoor environment, thus reducing the time cost. Finally, via a euclidean distance-based experiment, it is confirmed that the accuracy of the proposed fingerprint system is almost the same as that of the RSSI-based fingerprint system.|์ตœ๊ทผ ์Šค๋งˆํŠธํฐ๊ณผ Wi-Fi๊ฐ€ ์‹ค์ƒํ™œ์— ๋ณดํŽธํ™”๋˜๋ฉด์„œ ์œ„์น˜๊ธฐ๋ฐ˜ ์„œ๋น„์Šค์— ๋Œ€ํ•œ ๊ฐœ๋ฐœ ๋ถ„์•ผ๊ฐ€ ์‹ค๋‚ด ํ™˜๊ฒฝ์œผ๋กœ ์ ์ฐจ ํ™•๋Œ€๋˜๊ณ  ์žˆ๋‹ค. GPS๋กœ ๋Œ€ํ‘œ๋˜๋Š” ์‹ค์™ธ ์œ„์น˜ ์ธ์‹๊ณผ ๋‹ฌ๋ฆฌ ์œ„์น˜๊ธฐ๋ฐ˜ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์‹ค๋‚ด ์œ„์น˜ ์ธ์‹ ๊ธฐ์ˆ ์€ Wi-Fi, UWB, ๋ธ”๋ฃจํˆฌ์Šค ๋“ฑ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๊ทผ๊ฑฐ๋ฆฌ ๋ฌด์„  ํ†ต์‹  ๊ธฐ๋ฐ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์ด ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๋Œ€ํ‘œ์ ์ธ ์‹ค๋‚ด ์œ„์น˜์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘ ํ•˜๋‚˜์ธ Fingerprint๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์ˆ˜์‹ ํ•œ AP ์‹ ํ˜ธ์˜ ์ƒ๋Œ€์ ์ธ ํฌ๊ธฐ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” RSSI๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ Fingerprint๊ธฐ๋ฐ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์žฅ์• ๋ฌผ์ด ๋งŽ์ด ์กด์žฌํ•˜๋Š” ๋น„๊ฐ€์‹œ ๊ฑฐ๋ฆฌ์—์„œ TOA ๋ฐฉ์‹์— ๋น„ํ•ด ์ „ํŒŒ์˜ ๋ฐ˜์‚ฌ ๋ฐ ๊ตด์ ˆ๊ณผ ๊ฐ™์ด ์™œ๊ณก๋œ ๋ฌด์„  ํ™˜๊ฒฝ์— ๊ฐ•์ธํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. Fingerprint๋Š” ์‹ค๋‚ด์˜ ๋ชจ๋“  AP์˜ RSSI๋“ค์„ ์ธก์ •ํ•˜์—ฌ Radio map์„ ์ œ์ž‘ํ•˜๋Š” ๊ณผ์ •์ธ ํ•™์Šต ๋‹จ๊ณ„์™€ ์ƒ์„ฑ๋œ Radio map์˜ RSSI๋“ค์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ธก์ •๋œ RSSI์™€ ๋น„๊ตํ•˜์—ฌ ์‚ฌ์šฉ์ž์˜ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๋Š” ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„๋กœ ๋‚˜๋ˆ„์–ด์ง„๋‹ค. ํ•™์Šต ๋‹จ๊ณ„์—์„œ๋Š” ์œ„์น˜๋ฅผ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌ์šฉ์ž๊ฐ€ 2~3m์˜ ์ผ์ •ํ•œ ๊ฐ„๊ฒฉ์œผ๋กœ ์„ค์ •๋œ ์ฐธ์กฐ ์œ„์น˜๋“ค๋งˆ๋‹ค ์ธก์ •๋˜๋Š” ๋ชจ๋“  AP๋“ค์˜ RSSI๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ  Radio map์œผ๋กœ ์ œ์ž‘ํ•œ๋‹ค. ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„์—์„œ๋Š” ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์ œ์ž‘๋œ Radio map๊ณผ ์‚ฌ์šฉ์ž์˜ ์ด๋™์— ์˜ํ•ด ์ธก์ •๋˜๋Š” RSSI์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ๊ฐ€์žฅ ์œ ์‚ฌํ•œ RSSI ํŒจํ„ด์„ ๊ฐ€์ง€๋Š” ์ฐธ์กฐ ์œ„์น˜๊ฐ€ ์‹ค์‹œ๊ฐ„ ์‹ค๋‚ด ์œ„์น˜๋กœ ์ถ”์ •๋œ๋‹ค. ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹ (SVM), ์ฃผ์„ฑ๋ถ„ ๋ถ„์„(PCA) ๋“ฑ๊ณผ ๊ฐ™์ด ์ง€๋„ ๋ฐ ์ค€์ง€๋„ ํ•™์Šต๊ธฐ๋ฐ˜์˜ Fingerprint ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ Radio map์„ ์ œ์ž‘ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ๋“  ์‹ค๋‚ด ๊ณต๊ฐ„์—์„œ RSSI์˜ ์ธก์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ๊ฑด๋ฌผ์ด ๋Œ€ํ˜•ํ™”๋˜๊ณ  ๊ตฌ์กฐ๊ฐ€ ๋ณต์žกํ•ด์งˆ์ˆ˜๋ก ์ธก์ • ๊ณต๊ฐ„์ด ๋Š˜์–ด๋‚˜๋ฉด์„œ ์ž‘์—…๊ณผ ์‹œ๊ฐ„ ์†Œ๋ชจ๊ฐ€ ๋˜ํ•œ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ฑ„๋„๋ชจ๋ธ๋ง์„ ํ†ตํ•œ Radio map ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ง์ ‘์ ์ธ ์ธก์ • ๊ณผ์ •์ด ๋ถˆํ•„์š”ํ•œ ๋ฐ˜๋ฉด์— ๊ฑด๋ฌผ์˜ ์žฌ์งˆ, 3์ฐจ์›์ ์ธ ๊ตฌ์กฐ์— ๋”ฐ๋ฅธ ๋ฐ˜์‚ฌ ๊ณ„์ˆ˜ ๋ฐ ๋ชจ๋“  ์žฅ์• ๋ฌผ์— ๋Œ€ํ•œ ์ˆ˜์น˜์ ์ธ ๋ชจ๋ธ๋ง์ด ํ•„์ˆ˜์ ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ƒ๋‹นํžˆ ๋งŽ์€ ์ž‘์—…๋Ÿ‰์ด ์š”๊ตฌ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•™์Šต ๋‹จ๊ณ„์—์„œ Wi-Fi ์‹ ํ˜ธ์˜ ์ˆ˜์ง‘์‹œ๊ฐ„์„ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ ์‹ค๋‚ด ํ™˜๊ฒฝ์ด ๊ณ ๋ ค๋œ Unsupervised Dual Radio Mapping(UDRM) ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„์—์„œ Radio map์˜ ์ตœ์ ํ™”๊ฐ€ ๋™์‹œ์— ๊ฐ€๋Šฅํ•œ Minimum description length principle(MDLP)๊ธฐ๋ฐ˜์˜ Radio map Feedback(RMF) ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๊ฒฐํ•ฉ๋œ ๋น„์ง€๋„ํ•™์Šต๊ธฐ๋ฐ˜์˜ ์ž๋™ Wi-Fi Fingerprint๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์ œ์•ˆํ•˜๋Š” UDRM ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๊ธฐ๋ฐ˜์˜ ๋น„์ง€๋„ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ Autoencoder์™€ Generative Adversarial Network (GAN)๋ฅผ ๊ณต๊ฐ„๊ตฌ์กฐ์— ๋”ฐ๋ผ ์„ ํƒ์ ์œผ๋กœ ์ ์šฉํ•˜์—ฌ ํ•˜๋‚˜์˜ ์ฐธ์กฐ ์ธต์—์„œ ์ธก์ •๋œ Radio map์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฑด๋ฌผ์ „์ฒด์˜ Radio map์„ ์ƒ์„ฑํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋น„์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜ UDRM ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ง€๋„ ๋ฐ ์ค€์ง€๋„ ํ•™์Šต์—์„œ ํ•„์ˆ˜์ ์ธ Labeled data๊ฐ€ ํ•„์š”ํ•˜์ง€ ์•Š์œผ๋ฉฐ RSSI ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์˜์กด์„ฑ์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ๋‹ค. ๋˜ํ•œ 2์ฐจ์› ์‹ค๋‚ด ์ง€๋„๋ฅผ ํ†ตํ•ด ์‹ค๋‚ด ํ™˜๊ฒฝ์„ ๋™์‹œ์— ํ•™์Šตํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ธฐ์กด์˜ ์˜ˆ์ธก ๋ชจ๋ธ์— ๋น„ํ•ด Radio map์˜ ์˜ˆ์ธก ์ •ํ™•๋„๊ฐ€ ๋†’๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์˜ํ•ด ์ œ์ž‘๋œ Radio map์€ ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„์—์„œ ์‚ฌ์šฉ์ž์˜ ์‹ค์‹œ๊ฐ„ ์œ„์น˜์ธ์‹์— ์ ์šฉ๋œ๋‹ค. ๋™์‹œ์— ์ œ์•ˆํ•˜๋Š” MDLP ๊ธฐ๋ฐ˜์˜ ์ž๋™ Wi-Fi ์—…๋ฐ์ดํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ƒˆ๋กญ๊ฒŒ ์ธก์ •๋˜๋Š” AP๋“ค์˜ RSSI์˜ ๋ถ„ํฌํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ Radio map์— ํ”ผ๋“œ๋ฐฑํ•œ๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์ ์šฉ๋œ MDLP๋Š” ๋ฌด๋ถ„๋ณ„ํ•œ RSSI์˜ ์—…๋ฐ์ดํŒ…์„ ๋ฐฉ์ง€ํ•˜๊ณ  ์ถ”๊ฐ€๋˜๋Š” AP๋ฅผ Radio map์— ์—…๋ฐ์ดํŠธํ•จ์œผ๋กœ์„œ ์œ„์น˜์ธ์‹์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  Radio map์˜ ํฌ๊ธฐ์˜ ์ตœ์ ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์‹ค์ œ ์ธก์ •๊ธฐ๋ฐ˜์˜ Radio map๊ณผ ์„œ๋กœ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•œ Fingerprint ์‹œ์Šคํ…œ์˜ ๋†’์€ ์•ˆ์ •์„ฑ๊ณผ ์ •ํ™•๋„๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ตฌ์กฐ๊ฐ€ ๋‹ค๋ฅธ ์‹ค๋‚ด๊ณต๊ฐ„์˜ Radio map ์ƒ์„ฑ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์‹ค๋‚ด ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๊ฐ•์ธํ•จ๊ณผ ํ•™์Šต ์‹œ๊ฐ„ ์ธก์ •์„ ํ†ตํ•œ ์‹œ๊ฐ„ ๋น„์šฉ์ด ๊ฐ์†Œํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ Euclidean distance ๊ธฐ๋ฐ˜ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์‹ค์ œ ์ธก์ •ํ•œ RSSI๊ธฐ๋ฐ˜์˜ Fingerprint ์‹œ์Šคํ…œ๊ณผ ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์˜ ์œ„์น˜์ธ์‹ ์ •ํ™•๋„๊ฐ€ ๊ฑฐ์˜ ์ผ์น˜ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค.Contents Contents โ…ฐ Lists of Figures and Tables โ…ฒ Abstract โ…ต Chapter 1 Introduction 01 1.1 Background and Necessity for Research 01 1.2 Objectives and Contents for Research 04 Chapter 2 Wi-Fi Positioning and Unsupervised Learning 07 2.1 Wi-Fi Positioning 07 2.1.1 Wi-Fi Signal and Fingerprint 07 2.1.2 Fingerprint Techniques 15 2.2 Unsupervised Learning 23 2.2.1 Neural Network 23 2.2.2 Autoencoder 28 2.2.3 Generative Adversarial Network 31 Chapter 3 Proposed Fingerprint System 36 3.1 Unsupervised Dual Radio Mapping Algorithm 36 3.2 MDLP-based Radio Map Feedback Algorithm 47 Chapter 4 Experiment and Result 51 4.1 Experimental Environment and Configuration 51 4.2 Results of Unsupervised Dual Radio Mapping Algorithm 56 4.2 Results of MDLP-based Radio Map Feedback Algorithm 69 Chapter 5 Conclusion 79 Reference 81Docto

    Advances in Public Transport Platform for the Development of Sustainability Cities

    Get PDF
    Modern societies demand high and varied mobility, which in turn requires a complex transport system adapted to social needs that guarantees the movement of people and goods in an economically efficient and safe way, but all are subject to a new environmental rationality and the new logic of the paradigm of sustainability. From this perspective, an efficient and flexible transport system that provides intelligent and sustainable mobility patterns is essential to our economy and our quality of life. The current transport system poses growing and significant challenges for the environment, human health, and sustainability, while current mobility schemes have focused much more on the private vehicle that has conditioned both the lifestyles of citizens and cities, as well as urban and territorial sustainability. Transport has a very considerable weight in the framework of sustainable development due to environmental pressures, associated social and economic effects, and interrelations with other sectors. The continuous growth that this sector has experienced over the last few years and its foreseeable increase, even considering the change in trends due to the current situation of generalized crisis, make the challenge of sustainable transport a strategic priority at local, national, European, and global levels. This Special Issue will pay attention to all those research approaches focused on the relationship between evolution in the area of transport with a high incidence in the environment from the perspective of efficiency

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot

    Essentials of Business Analytics

    Get PDF
    • โ€ฆ
    corecore