16 research outputs found

    Proxy Blind Signature using Hyperelliptic Curve Cryptography

    Get PDF
    Blind signature is the concept to ensure anonymity of e-coins. Untracebility and unlinkability are two main properties of real coins and should also be mimicked electronically. A user has to fulll above two properties of blind signature for permission to spend an e-coin. During the last few years, asymmetric cryptosystems based on curve based cryptographiy have become very popular, especially for embedded applications. Elliptic curves(EC) are a special case of hyperelliptic curves (HEC). HEC operand size is only a fraction of the EC operand size. HEC cryptography needs a group order of size at least 2160. In particular, for a curve of genus two eld Fq with p 280 is needeed. Therefore, the eld arithmetic has to be performed using 80-bit long operands. Which is much better than the RSA using 1024 bit key length. The hyperelliptic curve is best suited for the resource constraint environments. It uses lesser key and provides more secure transmisstion of data

    A Survey Report On Elliptic Curve Cryptography

    Get PDF
    The paper presents an extensive and careful study of elliptic curve cryptography (ECC) and its applications. This paper also discuss the arithmetic involved in elliptic curve  and how these curve operations is crucial in determining the performance of cryptographic systems. It also presents  different forms of elliptic curve in various coordinate system , specifying which is most widely used and why. It also explains how isogenenies between elliptic curve  provides the secure ECC. Exentended form of elliptic curve i.e hyperelliptic curve has been presented here with its pros and cons. Performance of ECC and HEC is also discussed based on scalar multiplication and DLP. Keywords: Elliptic curve cryptography (ECC), isogenies, hyperelliptic curve (HEC) , Discrete Logarithm Problem (DLP), Integer  Factorization , Binary Field, Prime FieldDOI:http://dx.doi.org/10.11591/ijece.v1i2.8

    1. Kryptotag - Workshop über Kryptographie

    Get PDF
    Der Report enthält eine Sammlung aller Beiträge der Teilnehmer des 1. Kryptotages am 1. Dezember 2004 in Mannheim

    FPGA and ASIC Implementations of the ηT\eta_T Pairing in Characteristic Three

    Get PDF
    Since their introduction in constructive cryptographic applications, pairings over (hyper)elliptic curves are at the heart of an ever increasing number of protocols. As they rely critically on efficient algorithms and implementations of pairing primitives, the study of hardware accelerators became an active research area. In this paper, we propose two coprocessors for the reduced ηT\eta_T pairing introduced by Barreto {\it et al.} as an alternative means of computing the Tate pairing on supersingular elliptic curves. We prototyped our architectures on FPGAs. According to our place-and-route results, our coprocessors compare favorably with other solutions described in the open literature. We also present the first ASIC implementation of the reduced ηT\eta_T pairing
    corecore