20,405 research outputs found

    Genus 2 Curves with Complex Multiplication

    Get PDF
    Genus 2 curves are useful in cryptography for both discrete-log based and pairing-based systems, but a method is required to compute genus 2 curves with Jacobian with a given number of points. Currently, all known methods involve constructing genus 2 curves with complex multiplication via computing their 3 Igusa class polynomials. These polynomials have rational coefficients and require extensive computation and precision to compute. Both the computation and the complexity analysis of these algorithms can be improved by a more precise understanding of the denominators of the coefficients of the polynomials. The main goal of this paper is to give a bound on the denominators of Igusa class polynomials of genus 2 curves with CM by a primitive quartic CM field KK. We give an overview of Igusa\u27s results on the moduli space of genus two curves and the method to construct genus 2 curves via their Igusa invariants. We also give a complete characterization of the reduction type of a CM abelian surface, for biquadratic, cyclic, and non-Galois quartic CM fields, and for any type of prime decomposition of the prime, including ramified primes

    Examples of CM curves of genus two defined over the reflex field

    Full text link
    In "Proving that a genus 2 curve has complex multiplication", van Wamelen lists 19 curves of genus two over Q\mathbf{Q} with complex multiplication (CM). For each of the 19 curves, the CM-field turns out to be cyclic Galois over Q\mathbf{Q}. The generic case of non-Galois quartic CM-fields did not feature in this list, as the field of definition in that case always contains a real quadratic field, known as the real quadratic subfield of the reflex field. We extend van Wamelen's list to include curves of genus two defined over this real quadratic field. Our list therefore contains the smallest "generic" examples of CM curves of genus two. We explain our methods for obtaining this list, including a new height-reduction algorithm for arbitrary hyperelliptic curves over totally real number fields. Unlike Van Wamelen, we also give a proof of our list, which is made possible by our implementation of denominator bounds of Lauter and Viray for Igusa class polynomials.Comment: 31 pages; Updated some reference

    Isogeny graphs with maximal real multiplication

    Get PDF
    An isogeny graph is a graph whose vertices are principally polarized abelian varieties and whose edges are isogenies between these varieties. In his thesis, Kohel described the structure of isogeny graphs for elliptic curves and showed that one may compute the endomorphism ring of an elliptic curve defined over a finite field by using a depth first search algorithm in the graph. In dimension 2, the structure of isogeny graphs is less understood and existing algorithms for computing endomorphism rings are very expensive. Our setting considers genus 2 jacobians with complex multiplication, with the assumptions that the real multiplication subring is maximal and has class number one. We fully describe the isogeny graphs in that case. Over finite fields, we derive a depth first search algorithm for computing endomorphism rings locally at prime numbers, if the real multiplication is maximal. To the best of our knowledge, this is the first DFS-based algorithm in genus 2

    Higher dimensional 3-adic CM construction

    Full text link
    We find equations for the higher dimensional analogue of the modular curve X_0(3) using Mumford's algebraic formalism of algebraic theta functions. As a consequence, we derive a method for the construction of genus 2 hyperelliptic curves over small degree number fields whose Jacobian has complex multiplication and good ordinary reduction at the prime 3. We prove the existence of a quasi-quadratic time algorithm for computing a canonical lift in characteristic 3 based on these equations, with a detailed description of our method in genus 1 and 2.Comment: 23 pages; major revie

    Primes dividing invariants of CM Picard curves

    Full text link
    We give a bound on the primes dividing the denominators of invariants of Picard curves of genus 3 with complex multiplication. Unlike earlier bounds in genus 2 and 3, our bound is based not on bad reduction of curves, but on a very explicit type of good reduction. This approach simultaneously yields a simplification of the proof, and much sharper bounds. In fact, unlike all previous bounds for genus 3, our bound is sharp enough for use in explicit constructions of Picard curves

    Explicit computations of Serre's obstruction for genus 3 curves and application to optimal curves

    Full text link
    Let k be a field of characteristic different from 2. There can be an obstruction for an indecomposable principally polarized abelian threefold (A,a) over k to be a Jacobian over k. It can be computed in terms of the rationality of the square root of the value of a certain Siegel modular form. We show how to do this explicitly for principally polarized abelian threefolds which are the third power of an elliptic curve with complex multiplication. We use our numeric results to prove or refute the existence of some optimal curves of genus 3.Comment: 24 pages ; added : an explicit model, remarks on the hyperelliptic and decomposable reduction, reference

    Horizontal isogeny graphs of ordinary abelian varieties and the discrete logarithm problem

    Get PDF
    Fix an ordinary abelian variety defined over a finite field. The ideal class group of its endomorphism ring acts freely on the set of isogenous varieties with same endomorphism ring, by complex multiplication. Any subgroup of the class group, and generating set thereof, induces an isogeny graph on the orbit of the variety for this subgroup. We compute (under the Generalized Riemann Hypothesis) some bounds on the norms of prime ideals generating it, such that the associated graph has good expansion properties. We use these graphs, together with a recent algorithm of Dudeanu, Jetchev and Robert for computing explicit isogenies in genus 2, to prove random self-reducibility of the discrete logarithm problem within the subclasses of principally polarizable ordinary abelian surfaces with fixed endomorphism ring. In addition, we remove the heuristics in the complexity analysis of an algorithm of Galbraith for explicitly computing isogenies between two elliptic curves in the same isogeny class, and extend it to a more general setting including genus 2.Comment: 18 page

    Machine-learning the Sato-Tate conjecture

    Get PDF
    We apply some of the latest techniques from machine-learning to the arithmetic of hyperelliptic curves. More precisely we show that, with impressive accuracy and confidence (between 99 and 100 percent precision), and in very short time (matter of seconds on an ordinary laptop), a Bayesian classifier can distinguish between Sato–Tate groups given a small number of Euler factors for the L-function. Our observations are in keeping with the Sato-Tate conjecture for curves of low genus. For elliptic curves, this amounts to distinguishing generic curves (with Sato–Tate group SU(2)) from those with complex multiplication. In genus 2, a principal component analysis is observed to separate the generic Sato–Tate group USp(4) from the non-generic groups. Furthermore in this case, for which there are many more non-generic possibilities than in the case of elliptic curves, we demonstrate an accurate characterisation of several Sato–Tate groups with the same identity component. Throughout, our observations are verified using known results from the literature and the data available in the LMFDB. The results in this paper suggest that a machine can be trained to learn the Sato–Tate distributions and may be able to classify curves efficiently
    • …
    corecore