1,092 research outputs found

    Genome-Wide Localization of Protein-DNA Binding and Histone Modification by a Bayesian Change-Point Method with ChIP-seq Data

    Get PDF
    Next-generation sequencing (NGS) technologies have matured considerably since their introduction and a focus has been placed on developing sophisticated analytical tools to deal with the amassing volumes of data. Chromatin immunoprecipitation sequencing (ChIP-seq), a major application of NGS, is a widely adopted technique for examining protein-DNA interactions and is commonly used to investigate epigenetic signatures of diffuse histone marks. These datasets have notoriously high variance and subtle levels of enrichment across large expanses, making them exceedingly difficult to define. Windows-based, heuristic models and finite-state hidden Markov models (HMMs) have been used with some success in analyzing ChIP-seq data but with lingering limitations. To improve the ability to detect broad regions of enrichment, we developed a stochastic Bayesian Change-Point (BCP) method, which addresses some of these unresolved issues. BCP makes use of recent advances in infinite-state HMMs by obtaining explicit formulas for posterior means of read densities. These posterior means can be used to categorize the genome into enriched and unenriched segments, as is customarily done, or examined for more detailed relationships since the underlying subpeaks are preserved rather than simplified into a binary classification. BCP performs a near exhaustive search of all possible change points between different posterior means at high-resolution to minimize the subjectivity of window sizes and is computationally efficient, due to a speed-up algorithm and the explicit formulas it employs. In the absence of a well-established "gold standard" for diffuse histone mark enrichment, we corroborated BCP's island detection accuracy and reproducibility using various forms of empirical evidence. We show that BCP is especially suited for analysis of diffuse histone ChIP-seq data but also effective in analyzing punctate transcription factor ChIP datasets, making it widely applicable for numerous experiment types

    Predicting gene expression in the human malaria parasite Plasmodium falciparum using histone modification, nucleosome positioning, and 3D localization features.

    Get PDF
    Empirical evidence suggests that the malaria parasite Plasmodium falciparum employs a broad range of mechanisms to regulate gene transcription throughout the organism's complex life cycle. To better understand this regulatory machinery, we assembled a rich collection of genomic and epigenomic data sets, including information about transcription factor (TF) binding motifs, patterns of covalent histone modifications, nucleosome occupancy, GC content, and global 3D genome architecture. We used these data to train machine learning models to discriminate between high-expression and low-expression genes, focusing on three distinct stages of the red blood cell phase of the Plasmodium life cycle. Our results highlight the importance of histone modifications and 3D chromatin architecture in Plasmodium transcriptional regulation and suggest that AP2 transcription factors may play a limited regulatory role, perhaps operating in conjunction with epigenetic factors

    Bioinformatic approaches for understanding chromatin regulation

    No full text

    Inferring nucleosome positions with their histone mark annotation from ChIP data

    Get PDF
    MOTIVATION: The nucleosome is the basic repeating unit of chromatin. It contains two copies each of the four core histones H2A, H2B, H3 and H4 and about 147 bp of DNA. The residues of the histone proteins are subject to numerous post-translational modifications, such as methylation or acetylation. Chromatin immunoprecipitiation followed by sequencing (ChIP-seq) is a technique that provides genome-wide occupancy data of these modified histone proteins, and it requires appropriate computational methods. RESULTS: We present NucHunter, an algorithm that uses the data from ChIP-seq experiments directed against many histone modifications to infer positioned nucleosomes. NucHunter annotates each of these nucleosomes with the intensities of the histone modifications. We demonstrate that these annotations can be used to infer nucleosomal states with distinct correlations to underlying genomic features and chromatin-related processes, such as transcriptional start sites, enhancers, elongation by RNA polymerase II and chromatin-mediated repression. Thus, NucHunter is a versatile tool that can be used to predict positioned nucleosomes from a panel of histone modification ChIP-seq experiments and infer distinct histone modification patterns associated to different chromatin states. AVAILABILITY: The software is available at http://epigen.molgen.mpg.de/nuchunter/. CONTACT: [email protected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    MUSIC: identification of enriched regions in ChIP-Seq experiments using a mappability-corrected multiscale signal processing framework

    Get PDF
    We present MUSIC, a signal processing approach for identification of enriched regions in ChIP-Seq data, available at music.gersteinlab.org. MUSIC first filters the ChIP-Seq read-depth signal for systematic noise from non-uniform mappability, which fragments enriched regions. Then it performs a multiscale decomposition, using median filtering, identifying enriched regions at multiple length scales. This is useful given the wide range of scales probed in ChIP-Seq assays. MUSIC performs favorably in terms of accuracy and reproducibility compared with other methods. In particular, analysis of RNA polymerase II data reveals a clear distinction between the stalled and elongating forms of the polymerase. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0474-3) contains supplementary material, which is available to authorized users

    A framework to identify epigenome and transcription factor crosstalk

    Get PDF
    While changes in chromatin are integral to transcriptional reprogramming during cellular differentiation, it is currently unclear how chromatin modifications are targeted to specific loci. To systematically identify transcription factors (TFs) that can direct chromatin changes during cell fate decisions, we model the genome-wide dynamics of chromatin marks in terms of computationally predicted TF binding sites. By applying this computational approach to a time course of Polycomb-mediated H3K27me3 marks during neuronal differentiation of murine stem cells, we identify several motifs that likely regulate dynamics of this chromatin mark. Among these, the motifs bound by REST and by the SNAIL family of TFs are predicted to transiently recruit H3K27me3 in neuronal progenitors. We validate these predictions experimentally and show that absence of REST indeed causes loss of H3K27me3 at target promoters in trans, specifically at the neuronal progenitor state. Moreover, using targeted transgenic insertion, we show that promoter fragments containing REST or SNAIL binding sites are sufficient to recruit H3K27me3 in cis, while deletion of these sites results in loss of H3K27me3. These findings illustrate that the occurrence of TF binding sites can determine chromatin dynamics. Local determination of Polycomb activity by Rest and Snail motifs exemplifies such TF based regulation of chromatin. Furthermore, our results show that key TFs can be identified ab initio through computational modeling of epigenome datasets using a modeling approach that we make readily accessible

    DEVELOPMENT OF COMPUTATIONAL TOOLS TO STUDY THE PATTERNING OF DNA AND RNA METHYLATION IN HEALTHY AND DISEASE STATES

    Get PDF
    Epigenetics can be defined as the set of sequence independent processes that produces heritable changes in cellular information. These chromatin-based events such as covalent modification of DNA and histone tails are laid down by the co-ordinated action of chromatin modifying enzymes, thus altering the organisation of chromatin and its accessibility to the transcriptional machinery. Our understanding of epigenetic intricacies has considerably increased over the last decade owing to rapid development of genomic and proteomic technologies. This has resulted in huge surge in the generation of epigenomics data. Integrative analysis of these epigenomics datasets provides holistic view on the interplay of various epigenetic components and possible aberration in patterns in specific biological or disease states. Although, there are numerous computational tools available catering individually to each epigenomic datatype, a comprehensive computational framework for integrated exploratory analysis of these datasets was missing. We developed a suite of R packages methylPipe and compEpiTools that can efficiently handle whole genome base-resolution DNA methylation datasets and effortlessly integrate them with other epigenomics data. We applied these methods to the study of epigenomics landscape in B-cell lymphoma identifying a putative set of tumor suppressor genes. Moreover, we also applied these methods to explore possible associations between m6A RNA methylation, epigenetic marks and regulatory proteins
    corecore