907 research outputs found

    Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy

    Get PDF
    The search for the genomic sequences involved in human cancers can be greatly facilitated by maps of genomic imbalances identifying the involved chromosomal regions, particularly those that participate in the development of occult preneoplastic conditions that progress to clinically aggressive invasive cancer. The integration of such regions with human genome sequence variation may provide valuable clues about their overall structure and gene content. By extension, such knowledge may help us understand the underlying genetic components involved in the initiation and progression of these cancers. We describe the development of a genome-wide map of human bladder cancer that tracks its progression from in situ precursor conditions to invasive disease. Testing for allelic losses using a genome-wide panel of 787 microsatellite markers was performed on multiple DNA samples, extracted from the entire mucosal surface of the bladder and corresponding to normal urothelium, in situ preneoplastic lesions, and invasive carcinoma. Using this approach, we matched the clonal allelic losses in distinct chromosomal regions to specific phases of bladder neoplasia and produced a detailed genetic map of bladder cancer development. These analyses revealed three major waves of genetic changes associated with growth advantages of successive clones and reflecting a stepwise conversion of normal urothelial cells into cancer cells. The genetic changes map to six regions at 3q22-q24, 5q22-q31, 9q21-q22, 10q26, 13q14, and 17p13, which may represent critical hits driving the development of bladder cancer. Finally, we performed high-resolution mapping using single nucleotide polymorphism markers within one region on chromosome 13q14, containing the model tumor suppressor gene RB1, and defined a minimal deleted region associated with clonal expansion of in situ neoplasia. These analyses provided new insights on the involvement of several non-coding sequences mapping to the region and identified novel target genes, termed forerunner (FR) genes, involved in early phases of cancer developmentope

    Studies on sequencing analyses of genetic and epigenetics features in melanoma and breast cancer

    Get PDF
    The dissertation includes 3 projects and in each work we applied different approaches to sequencing and bioinformatics analyses to gain a better understanding of the molecular characteristics of breast cancer and melanoma. In the first project (paper I) we applied whole exome sequencing to samples from patients with metastatic melanoma. We assessed intra patient heterogeneity and we identified several general patterns of tumor evolution in this malignancy. In the second project (paper II) we used promoter methylation-specific sequencing and analysed the variation of promoter methylation of tumor suppressors in healthy individuals. As such, we also established a cost-effective method to study promoter methylation as a potential modulator of cancer risk. In the third project (paper III), we used microRNA sequencing and identified novel miRNAs that were overexpressed in breast cancer patients. Two of these were selected for further investigation focusing on their potential biological roles in breast cancer.Doktorgradsavhandlin

    Guanine Holes Are Prominent Targets for Mutation in Cancer and Inherited Disease

    Get PDF
    Albino Bacolla, Guliang Wang, Aklank Jain, Karen M. Vasquez, Division of Pharmacology and Toxicology, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas, United States of AmericaAlbino Bacolla, Nuri A. Temiz, Ming Yi, Joseph Ivanic, Regina Z. Cer, Duncan E. Donohue, Uma S. Mudunuri, Natalia Volfovsky, Brian T. Luke, Robert M., Stephens, Jack R. Collins, Advanced Biomedical Computing Center, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of AmericaEdward V. Ball, David N. Cooper, Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United KingdomSingle base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G•C bp in the context of all 64 5′-NGNN-3′ motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials). Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease.This work was supported by grants from the NIH (CA097175 and CA093729) to KMV, NCI/NIH contract HHSN261200800001E to AB and the Frederick National Laboratory for Cancer Research, and CBIIT/caBIG ISRCE yellow task #09-260 to the Frederick National Laboratory for Cancer Research. DNC and EVB received financial support from BIOBASE GmbH through a license agreement (for HGMD) with Cardiff University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.PharmacyEmail: [email protected]

    DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning

    Get PDF
    Genome-wide association studies (GWAS) identify genetic variants associated with quantitative traits or disease. Thus, GWAS never directly link variants to regulatory mechanisms, which, in turn, are typically inferred during post-hoc analyses. In parallel, a recent deep learning-based method allows for prediction of regulatory effects per variant on currently up to 1,000 cell type-specific chromatin features. We here describe “DeepWAS”, a new approach that directly integrates predictions of these regulatory effects of single variants into a multivariate GWAS setting. As a result, single variants associated with a trait or disease are, by design, coupled to their impact on a chromatin feature in a cell type. Up to 40,000 regulatory single-nucleotide polymorphisms (SNPs) were associated with multiple sclerosis (MS, 4,888 cases and 10,395 controls), major depressive disorder (MDD, 1,475 cases and 2,144 controls), and height (5,974 individuals) to each identify 43-61 regulatory SNPs, called deepSNPs, which are shown to reach at least nominal significance in large GWAS. MS- and height-specific deepSNPs resided in active chromatin and introns, whereas MDD-specific deepSNPs located mostly to intragenic regions and repressive chromatin states. We found deepSNPs to be enriched in public or cohort-matched expression and methylation quantitative trait loci and demonstrate the potential of the DeepWAS method to directly generate testable functional hypotheses based on genotype data alone. DeepWAS is an innovative GWAS approach with the power to identify individual SNPs in non-coding regions with gene regulatory capacity with a joint contribution to disease risk. DeepWAS is available at https://github.com/cellmapslab/DeepWAS

    Decreased expression of 17β-hydroxysteroid dehydrogenase type 1 is associated with DNA hypermethylation in colorectal cancer located in the proximal colon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of 17β-estradiol (E2) in the prevention of large bowel tumorigenesis has been shown in many epidemiological studies. Extragonadal E2 may form by the aromatase pathway from androstenedione or the sulfatase pathway from estrone (E1) sulfate followed by E1 reduction to E2 by 17-β-hydroxysteroid dehydrogenase (HSD17B1), so <it>HSD17B1 </it>gene expression may play an important role in the production of E2 in peripheral tissue, including the colon.</p> <p>Methods</p> <p><it>HSD17B1 </it>expression was analyzed in colorectal cancer cell lines (HT29, SW707) and primary colonic adenocarcinoma tissues collected from fifty two patients who underwent radical colon surgical resection. Histopathologically unchanged colonic mucosa located at least 10-20 cm away from the cancerous lesions was obtained from the same patients. Expression level of <it>HSD17B1 </it>using quantitative PCR and western blot were evaluated. DNA methylation level in the 5' flanking region of <it>HSD17B1 </it>CpG rich region was assessed using bisulfite DNA sequencing and HRM analysis. The influence of DNA methylation on HSD17B1 expression was further evaluated by ChIP analysis in HT29 and SW707 cell lines. The conversion of estrone (E1) in to E2 was determined by electrochemiluminescence method.</p> <p>Results</p> <p>We found a significant decrease in HSD17B1 transcript (<it>p </it>= 0.0016) and protein (<it>p </it>= 0.0028) levels in colorectal cancer (CRC) from the proximal but not distal colon and rectum. This reduced <it>HSD17B1 </it>expression was associated with significantly increased DNA methylation (<it>p </it>= 0.003) in the CpG rich region located in the 5' flanking sequence of the <it>HSD17B1 </it>gene in CRC in the proximal but not distal colon and rectum. We also showed that 5-dAzaC induced demethylation of the 5' flanking region of <it>HSD17B1</it>, leading to increased occupation of the promoter by Polymerase II, and increased transcript and protein levels in HT29 and SW707 CRC cells, which contributed to the increase in E2 formation.</p> <p>Conclusions</p> <p>Our results showed that reduced <it>HSD17B1 </it>expression can be associated with DNA methylation in the 5' flanking region of <it>HSD17B1 </it>in CRC from the proximal colon.</p
    corecore