2,888 research outputs found

    Methods to study splicing from high-throughput RNA Sequencing data

    Full text link
    The development of novel high-throughput sequencing (HTS) methods for RNA (RNA-Seq) has provided a very powerful mean to study splicing under multiple conditions at unprecedented depth. However, the complexity of the information to be analyzed has turned this into a challenging task. In the last few years, a plethora of tools have been developed, allowing researchers to process RNA-Seq data to study the expression of isoforms and splicing events, and their relative changes under different conditions. We provide an overview of the methods available to study splicing from short RNA-Seq data. We group the methods according to the different questions they address: 1) Assignment of the sequencing reads to their likely gene of origin. This is addressed by methods that map reads to the genome and/or to the available gene annotations. 2) Recovering the sequence of splicing events and isoforms. This is addressed by transcript reconstruction and de novo assembly methods. 3) Quantification of events and isoforms. Either after reconstructing transcripts or using an annotation, many methods estimate the expression level or the relative usage of isoforms and/or events. 4) Providing an isoform or event view of differential splicing or expression. These include methods that compare relative event/isoform abundance or isoform expression across two or more conditions. 5) Visualizing splicing regulation. Various tools facilitate the visualization of the RNA-Seq data in the context of alternative splicing. In this review, we do not describe the specific mathematical models behind each method. Our aim is rather to provide an overview that could serve as an entry point for users who need to decide on a suitable tool for a specific analysis. We also attempt to propose a classification of the tools according to the operations they do, to facilitate the comparison and choice of methods.Comment: 31 pages, 1 figure, 9 tables. Small corrections adde

    Regulation of splicing factors by alternative splicing and NMD is conserved between kingdoms yet evolutionarily flexible.

    Get PDF
    Ultraconserved elements, unusually long regions of perfect sequence identity, are found in genes encoding numerous RNA-binding proteins including arginine-serine rich (SR) splicing factors. Expression of these genes is regulated via alternative splicing of the ultraconserved regions to yield mRNAs that are degraded by nonsense-mediated mRNA decay (NMD), a process termed unproductive splicing (Lareau et al. 2007; Ni et al. 2007). As all human SR genes are affected by alternative splicing and NMD, one might expect this regulation to have originated in an early SR gene and persisted as duplications expanded the SR family. But in fact, unproductive splicing of most human SR genes arose independently (Lareau et al. 2007). This paradox led us to investigate the origin and proliferation of unproductive splicing in SR genes. We demonstrate that unproductive splicing of the splicing factor SRSF5 (SRp40) is conserved among all animals and even observed in fungi; this is a rare example of alternative splicing conserved between kingdoms, yet its effect is to trigger mRNA degradation. As the gene duplicated, the ancient unproductive splicing was lost in paralogs, and distinct unproductive splicing evolved rapidly and repeatedly to take its place. SR genes have consistently employed unproductive splicing, and while it is exceptionally conserved in some of these genes, turnover in specific events among paralogs shows flexible means to the same regulatory end

    Characteristics of transposable element exonization within human and mouse

    Get PDF
    Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs) revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure

    A genome-wide survey demonstrates widespread non-linear mRNA in expressed sequences from multiple species

    Get PDF
    We describe here the results of the first genome-wide survey of candidate exon repetition events in expressed sequences from human, mouse, rat, chicken, zebrafish and fly. Exon repetition is a rare event, reported in <10 genes, in which one or more exons is tandemly duplicated in mRNA but not in the gene. To identify candidates, we analysed database sequences for mRNA transcripts in which the order of the spliced exons does not follow the linear genomic order of the individual gene [events we term rearrangements or repetition in exon order (RREO)]. Using a computational approach, we have identified 245 genes in mammals that produce RREO events. RREO in mRNA occurs predominantly in the coding regions of genes. However, exon 1 is never involved. Analysis of the open reading frames suggests that this process may increase protein diversity and regulate protein expression via nonsense-mediated RNA decay. The sizes of the exons and introns involved around these events suggest a gene model structure that may facilitate non-linear splicing. These findings imply that RREO affects a significant subset of genes within a genome and suggests that non-linear information encoded within the genomes of complex organisms could contribute to phenotypic variation

    Genome-wide analysis of alternative splicing events in Hordeum vulgare: highlighting retention of intron-based splicing and its possible function through network analysis

    Get PDF
    In this study, using homology mapping of assembled expressed sequence tags against the genomic data, we identified alternative splicing events in barley. Results demonstrated that intron retention is frequently associated with specific abiotic stresses. Network analysis resulted in discovery of some specific sub-networks between miRNAs and transcription factors in genes with high number of alternative splicing, such as cross talk between SPL2, SPL10 and SPL11 regulated by miR156 and miR157 families. To confirm the alternative splicing events, elongation factor protein (MLOC_3412) was selected followed by experimental verification of the predicted splice variants by Semi quantitative Reverse Transcription PCR (qRT-PCR). Our novel integrative approach opens a new avenue for functional annotation of alternative splicing through regulatory-based network discovery.Bahman Panahi, Seyed Abolghasem Mohammadi, Reyhaneh Ebrahimi Khaksefidi, Jalil Fallah Mehrabadi, Esmaeil Ebrahimi

    Extraction of Transcript Diversity from Scientific Literature

    Get PDF
    Transcript diversity generated by alternative splicing and associated mechanisms contributes heavily to the functional complexity of biological systems. The numerous examples of the mechanisms and functional implications of these events are scattered throughout the scientific literature. Thus, it is crucial to have a tool that can automatically extract the relevant facts and collect them in a knowledge base that can aid the interpretation of data from high-throughput methods. We have developed and applied a composite text-mining method for extracting information on transcript diversity from the entire MEDLINE database in order to create a database of genes with alternative transcripts. It contains information on tissue specificity, number of isoforms, causative mechanisms, functional implications, and experimental methods used for detection. We have mined this resource to identify 959 instances of tissue-specific splicing. Our results in combination with those from EST-based methods suggest that alternative splicing is the preferred mechanism for generating transcript diversity in the nervous system. We provide new annotations for 1,860 genes with the potential for generating transcript diversity. We assign the MeSH term “alternative splicing” to 1,536 additional abstracts in the MEDLINE database and suggest new MeSH terms for other events. We have successfully extracted information about transcript diversity and semiautomatically generated a database, LSAT, that can provide a quantitative understanding of the mechanisms behind tissue-specific gene expression. LSAT (Literature Support for Alternative Transcripts) is publicly available at http://www.bork.embl.de/LSAT/

    Alternative Splicing and Expression Profile Analysis of Expressed Sequence Tags in Domestic Pig

    Get PDF
    Domestic pig (Sus scrofa domestica) is one of the most important mammals to humans. Alternative splicing is a cellular mechanism in eukaryotes that greatly increases the diversity of gene products. Expression sequence tags (ESTs) have been widely used for gene discovery, expression profile analysis, and alternative splicing detection. In this study, a total of 712,905 ESTs extracted from 101 different non-normalized EST libraries of the domestic pig were analyzed. These EST libraries cover the nervous system, digestive system, immune system, and meat production related tissues from embryo, newborn, and adult pigs, making contributions to the analysis of alternative splicing variants as well as expression profiles in various stages of tissues. A modified approach was designed to cluster and assemble large EST datasets, aiming to detect alternative splicing together with EST abundance of each splicing variant. Much efforts were made to classify alternative splicing into different types and apply different filters to each type to get more reliable results. Finally, a total of 1,223 genes with average 2.8 splicing variants were detected among 16,540 unique genes. The overview of expression profiles would change when we take alternative splicing into account
    corecore