416 research outputs found

    Comparative genomics of recent adaptation in Candida pathogens

    Full text link
    [eng] Fungal infections pose a serious health threat, affecting >1,000 million people and causing ~1.5 million deaths each year. The problem is growing due to insufficient diagnostic and therapeutic options, increased number of susceptible patients, expansion of pathogens partly linked to climate change and the rise of antifungal drug resistance. Among other fungal pathogens, Candida species are a major cause of severe hospital-acquired infections, with high mortality in immunocompromised patients. Various Candida pathogens constitute a public health issue, which require further efforts to develop new drugs, optimize currently available treatments and improve diagnostics. Given the high dynamism of Candida genomes, a promising strategy to improve current therapies and diagnostics is to understand the evolutionary mechanisms of adaptation to antifungal drugs and to the human host. Previous work using in vitro evolution, population genomics, selection inferences and Genome Wide Association Studies (GWAS) have partially clarified such recent adaptation, but various open questions remain. In the three research articles that conform this PhD thesis we addressed some of these gaps from the perspective of comparative genomics. First, we addressed methodological issues regarding the analysis of Candida genomes. Studying recent adaptation in these pathogens requires adequate bioinformatic tools for variant calling, filtering and functional annotation. Among other reasons, current methods are suboptimal due to limited accuracy to identify structural variants from short read sequencing data. In addition, there is a need for easy-to-use, reproducible variant calling pipelines. To address these gaps we developed the “personalized Structural Variation detection” pipeline (perSVade), a framework to call, filter and annotate several variant types, including structural variants, directly from reads. PerSVade enables accurate identification of structural variants in any species of interest, such as Candida pathogens. In addition, our tool automatically predicts the structural variant calling accuracy on simulated genomes, which informs about the reliability of the calling process. Furthermore, perSVade can be used to analyze single nucleotide polymorphisms and copy number-variants, so that it facilitates multi-variant, reproducible genomic studies. This tool will likely boost variant analyses in Candida pathogens and beyond. Second, we addressed open questions about recent adaptation in Candida, using perSVade for variant identification. On the one hand, we investigated the evolutionary mechanisms of drug resistance in Candida glabrata. For this, we used a large-scale in vitro evolution experiment to study adaptation to two commonly-used antifungals: fluconazole and anidulafungin. Our results show rapid adaptation to one or both drugs, with moderate fitness costs and through few mutations in a narrow set of genes. In addition, we characterize a novel role of ERG3 mutations in cross-resistance towards fluconazole in anidulafungin-adapted strains. These findings illuminate the mutational paths leading to drug resistance and cross-resistance in Candida pathogens. On the other hand, we reanalyzed ~2,000 public genomes and phenotypes to understand the signs of recent selection and drug resistance in six major Candida species: C. auris, C. glabrata, C. albicans, C. tropicalis, C. parapsilosis and C. orthopsilosis. We found hundreds of genes under recent selection, suggesting that clinical adaptation is diverse and complex. These involve species-specific but also convergently affected processes, such as cell adhesion, which could underlie conserved adaptive mechanisms. In addition, using GWAS we predicted known drivers of antifungal resistance alongside potentially novel players. Furthermore, our analyses reveal an important role of generally-overlooked structural variants, and suggest an unexpected involvement of (para)sexual recombination in the spread of resistance. Taken together, our findings provide novel insights on how Candida pathogens adapt to human-related environments and suggest candidate genes that deserve future attention. In summary, the results of this thesis improve our knowledge about the mechanisms of recent adaptation in Candida pathogens, which may enable improved therapeutic and diagnostic applications.[cat] Les infeccions fúngiques representen una greu amenaça per a la salut, afectant a més de 1.000 milions de persones i causant aproximadament 1,5 milions de morts cada any. El problema està augmentant a causa d’unes opcions terapèutiques i diagnòstiques insuficients, l'increment del nombre de pacients susceptibles, l'expansió dels patògens parcialment vinculada al canvi climàtic i l'augment de la resistència als fàrmacs antifúngics. D’entre diversos fongs patògens, els llevats del gènere Candida són una causa important d'infeccions nosocomials, amb una alta mortalitat en pacients immunodeprimits. Diverses espècies de Candida constitueixen un problema de salut pública, cosa que requereix més esforços per a desenvolupar nous medicaments, optimitzar els tractaments disponibles i millorar els diagnòstics. Tenint en compte el dinamisme genòmic d’aquests patògens, una estratègia prometedora per millorar les teràpies i diagnòstics actuals és comprendre els mecanismes evolutius d'adaptació als fàrmacs antifúngics i a l’hoste humà. Treballs anteriors utilitzant l'evolució in vitro, la genòmica de poblacions, les inferències de selecció i els estudis d'associació de genoma complet (GWAS, per les sigles en anglès) han aclarit parcialment aquesta adaptació recent, però encara hi ha diverses preguntes obertes. En els tres articles que conformen aquesta tesi doctoral, hem abordat algunes d'aquestes preguntes des de la perspectiva de la genòmica comparativa. En primer lloc, hem abordat qüestions metodològiques relatives a l'anàlisi dels genomes de les espècies Candida. L'estudi de l'adaptació recent en aquests patògens requereix eines bioinformàtiques adequades per a la detecció, filtratge i anotació funcional de variants genètiques. Entre altres raons, els mètodes actuals són subòptims a causa de la limitada precisió per identificar variants estructurals a partir de dades de seqüenciació amb lectures curtes. A més, hi ha una necessitat d’eines computacionals per a la detecció de variants que siguin senzilles d'utilitzar i reproduibles. Per abordar aquestes mancances, hem desenvolupat el mètode bioinformàtic "personalized Structural Variation detection" (perSVade), una eina que permet la detecció, filtratge i anotació de diversos tipus de variants, incloent-hi les variants estructurals, directament des de les lectures. PerSVade permet la identificació precisa de les variants estructurals en qualsevol espècie d'interès, com ara els patògens Candida. A més, la nostra eina prediu automàticament la precisió de la detecció d’aquestes variants en genomes simulats, la qual cosa informa sobre la fiabilitat del procés. Finalment, perSVade es pot utilitzar per analitzar altres tipus de variants, com els polimorfismes de nucleòtid únic o els canvis en el nombre de còpies, facilitant així estudis genòmics integrals i reproduibles. Aquesta eina probablement impulsarà les anàlisis genòmiques en els patògens Candida i també en altres espècies. En segon lloc, hem abordat algunes de les preguntes obertes sobre l'adaptació recent en els llevats Candida, utilitzant perSVade per a la identificació de variants. D'una banda, hem investigat els mecanismes evolutius de resistència als fàrmacs antifúngics en Candida glabrata. Per a això, hem utilitzat un experiment d'evolució in vitro a gran escala per estudiar l'adaptació a dos antifúngics comuns: el fluconazol i l’anidulafungina. Els nostres resultats mostren una adaptació ràpida a un o ambdós fàrmacs, amb un cost per al creixement moderat i a través de poques mutacions en un nombre reduït de gens. A més, hem caracteritzat un paper nou de les mutacions en ERG3 en la resistència creuada al fluconazol en soques adaptades a anidulafungina. Aquests descobriments aclareixen els processos mutacionals que condueixen a la resistència als fàrmacs i a la resistència creuada en els patògens Candida. D'altra banda, hem re-analitzat aproximadament 2.000 genomes i fenotips disponibles en repositoris públics per a comprendre els senyals genòmics de selecció recent i de resistència a fàrmacs antifúngics, en sis espècies rellevants de Candida: C. auris, C. glabrata, C. albicans, C. tropicalis, C. parapsilosis i C. orthopsilosis. Hem trobat centenars de gens sota selecció recent, suggerint que l'adaptació clínica és diversa i complexa. Aquests gens estan relacionats amb funcions específiques de cada espècie, però també trobem processos alterats de manera similar en diferents patògens, com per exemple l’adhesió cel·lular, cosa que indica fenòmens d’adaptació conservats. A part, utilitzant GWAS hem predit mecanismes esperats de resistència a antifúngics i també possibles nous factors. A més, les nostres anàlisis revelen un paper important de les variants estructurals, generalment poc estudiades, i suggereixen una implicació inesperada de la recombinació (para)sexual en la propagació de la resistència. En conjunt, els nostres descobriments proporcionen noves perspectives sobre com els patògens Candida s'adapten als entorns humans, i suggereixen gens candidats que mereixen investigacions futures. En resum, els resultats d’aquesta tesi milloren el nostre coneixement sobre els mecanismes d'adaptació recent en els patògens Candida, cosa que pot permetre el disseny de noves teràpies i diagnòstics

    Molecular signals of arms race evolution between RNA viruses and their hosts

    Get PDF
    Viruses are intracellular parasites that hijack their hosts’ cellular machinery to replicate themselves. This creates an evolutionary “arms race” between hosts and viruses, where the former develop mechanisms to restrict viral infection and the latter evolve ways to circumvent these molecular barriers. In this thesis, I explore examples of this virus-host molecular interplay, focusing on events in the evolutionary histories of both viruses and hosts. The thesis begins by examining how recombination, the exchange of genetic material between related viruses, expands the genomic diversity of the Sarbecovirus subgenus, which includes SARS-CoV responsible for the 2002 SARS epidemic and SARS-CoV-2 responsible for the COVID-19 pandemic. On the host side, I examine the evolutionary interaction between RNA viruses and two interferon-stimulated genes expressed in hosts. First, I show how the 2′-5′-oligoadenylate synthetase 1 (OAS1) gene of horseshoe bats (Rhinolophoidea), the reservoir host of sarbecoviruses, lost its anti-coronaviral activity at the base of this bat superfamily. By reconstructing the Rhinolophoidea common ancestor OAS1 protein, I first validate the loss of antiviral function and highlight the implications of this event in the virus-host association between sarbecoviruses and horseshoe bat hosts. Second, I focus on the evolution of the human butyrophilin subfamily 3 member A3 (BTN3A3) gene which restricts infection by avian influenza A viruses (IAV). The evolutionary analysis reveals that BTN3A3’s anti-IAV function was gained within the primates and that specific amino acid substitutions need to be acquired in IAVs’ NP protein to evade the human BTN3A3 activity. Gain of BTN3A3-evasion-conferring substitutions correlate with all major human IAV pandemics and epidemics, making these NP residues key markers for IAV transmissibility potential to humans. In the final part of the thesis, I present a novel approach for evaluating dinucleotide compositional biases in virus genomes. An application of my metric on the Flaviviridae virus family uncovers how ancestral host shifts of these viruses correlate with adaptive shifts in their genomes’ dinucleotide representation. Collectively, the contents of this thesis extend our understanding of how viruses interact with their hosts along their intertangled evolution and provide insights into virus host switching and pandemic preparedness

    Digital agriculture: research, development and innovation in production chains.

    Get PDF
    Digital transformation in the field towards sustainable and smart agriculture. Digital agriculture: definitions and technologies. Agroenvironmental modeling and the digital transformation of agriculture. Geotechnologies in digital agriculture. Scientific computing in agriculture. Computer vision applied to agriculture. Technologies developed in precision agriculture. Information engineering: contributions to digital agriculture. DIPN: a dictionary of the internal proteins nanoenvironments and their potential for transformation into agricultural assets. Applications of bioinformatics in agriculture. Genomics applied to climate change: biotechnology for digital agriculture. Innovation ecosystem in agriculture: Embrapa?s evolution and contributions. The law related to the digitization of agriculture. Innovating communication in the age of digital agriculture. Driving forces for Brazilian agriculture in the next decade: implications for digital agriculture. Challenges, trends and opportunities in digital agriculture in Brazil

    ACARORUM CATALOGUS IX. Acariformes, Acaridida, Schizoglyphoidea (Schizoglyphidae), Histiostomatoidea (Histiostomatidae, Guanolichidae), Canestrinioidea (Canestriniidae, Chetochelacaridae, Lophonotacaridae, Heterocoptidae), Hemisarcoptoidea (Chaetodactylidae, Hyadesiidae, Algophagidae, Hemisarcoptidae, Carpoglyphidae, Winterschmidtiidae)

    Get PDF
    The 9th volume of the series Acarorum Catalogus contains lists of mites of 13 families, 225 genera and 1268 species of the superfamilies Schizoglyphoidea, Histiostomatoidea, Canestrinioidea and Hemisarcoptoidea. Most of these mites live on insects or other animals (as parasites, phoretic or commensals), some inhabit rotten plant material, dung or fungi. Mites of the families Chetochelacaridae and Lophonotacaridae are specialised to live with Myriapods (Diplopoda). The peculiar aquatic or intertidal mites of the families Hyadesidae and Algophagidae are also included.Publishe

    Digital agriculture: research, development and innovation in production chains.

    Get PDF
    Digital transformation in the field towards sustainable and smart agriculture. Digital agriculture: definitions and technologies. Agroenvironmental modeling and the digital transformation of agriculture. Geotechnologies in digital agriculture. Scientific computing in agriculture. Computer vision applied to agriculture. Technologies developed in precision agriculture. Information engineering: contributions to digital agriculture. DIPN: a dictionary of the internal proteins nanoenvironments and their potential for transformation into agricultural assets. Applications of bioinformatics in agriculture. Genomics applied to climate change: biotechnology for digital agriculture. Innovation ecosystem in agriculture: Embrapa?s evolution and contributions. The law related to the digitization of agriculture. Innovating communication in the age of digital agriculture. Driving forces for Brazilian agriculture in the next decade: implications for digital agriculture. Challenges, trends and opportunities in digital agriculture in Brazil.Translated by Beverly Victoria Young and Karl Stephan Mokross

    Hands-on Science. Celebrating Science and Science Education

    Get PDF
    The book herein aims to contribute to the improvement of Science Education in our schools and to an effective implementation of a sound widespread scientific literacy at all levels of society

    Literacy for digital futures : Mind, body, text

    Get PDF
    The unprecedented rate of global, technological, and societal change calls for a radical, new understanding of literacy. This book offers a nuanced framework for making sense of literacy by addressing knowledge as contextualised, embodied, multimodal, and digitally mediated. In today’s world of technological breakthroughs, social shifts, and rapid changes to the educational landscape, literacy can no longer be understood through established curriculum and static text structures. To prepare teachers, scholars, and researchers for the digital future, the book is organised around three themes – Mind and Materiality; Body and Senses; and Texts and Digital Semiotics – to shape readers’ understanding of literacy. Opening up new interdisciplinary themes, Mills, Unsworth, and Scholes confront emerging issues for next-generation digital literacy practices. The volume helps new and established researchers rethink dynamic changes in the materiality of texts and their implications for the mind and body, and features recommendations for educational and professional practice

    Differential evolution of non-coding DNA across eukaryotes and its close relationship with complex multicellularity on Earth

    Get PDF
    Here, I elaborate on the hypothesis that complex multicellularity (CM, sensu Knoll) is a major evolutionary transition (sensu Szathmary), which has convergently evolved a few times in Eukarya only: within red and brown algae, plants, animals, and fungi. Paradoxically, CM seems to correlate with the expansion of non-coding DNA (ncDNA) in the genome rather than with genome size or the total number of genes. Thus, I investigated the correlation between genome and organismal complexities across 461 eukaryotes under a phylogenetically controlled framework. To that end, I introduce the first formal definitions and criteria to distinguish ‘unicellularity’, ‘simple’ (SM) and ‘complex’ multicellularity. Rather than using the limited available estimations of unique cell types, the 461 species were classified according to our criteria by reviewing their life cycle and body plan development from literature. Then, I investigated the evolutionary association between genome size and 35 genome-wide features (introns and exons from protein-coding genes, repeats and intergenic regions) describing the coding and ncDNA complexities of the 461 genomes. To that end, I developed ‘GenomeContent’, a program that systematically retrieves massive multidimensional datasets from gene annotations and calculates over 100 genome-wide statistics. R-scripts coupled to parallel computing were created to calculate >260,000 phylogenetic controlled pairwise correlations. As previously reported, both repetitive and non-repetitive DNA are found to be scaling strongly and positively with genome size across most eukaryotic lineages. Contrasting previous studies, I demonstrate that changes in the length and repeat composition of introns are only weakly or moderately associated with changes in genome size at the global phylogenetic scale, while changes in intron abundance (within and across genes) are either not or only very weakly associated with changes in genome size. Our evolutionary correlations are robust to: different phylogenetic regression methods, uncertainties in the tree of eukaryotes, variations in genome size estimates, and randomly reduced datasets. Then, I investigated the correlation between the 35 genome-wide features and the cellular complexity of the 461 eukaryotes with phylogenetic Principal Component Analyses. Our results endorse a genetic distinction between SM and CM in Archaeplastida and Metazoa, but not so clearly in Fungi. Remarkably, complex multicellular organisms and their closest ancestral relatives are characterized by high intron-richness, regardless of genome size. Finally, I argue why and how a vast expansion of non-coding RNA (ncRNA) regulators rather than of novel protein regulators can promote the emergence of CM in Eukarya. As a proof of concept, I co-developed a novel ‘ceRNA-motif pipeline’ for the prediction of “competing endogenous” ncRNAs (ceRNAs) that regulate microRNAs in plants. We identified three candidate ceRNAs motifs: MIM166, MIM171 and MIM159/319, which were found to be conserved across land plants and be potentially involved in diverse developmental processes and stress responses. Collectively, the findings of this dissertation support our hypothesis that CM on Earth is a major evolutionary transition promoted by the expansion of two major ncDNA classes, introns and regulatory ncRNAs, which might have boosted the irreversible commitment of cell types in certain lineages by canalizing the timing and kinetics of the eukaryotic transcriptome.:Cover page Abstract Acknowledgements Index 1. The structure of this thesis 1.1. Structure of this PhD dissertation 1.2. Publications of this PhD dissertation 1.3. Computational infrastructure and resources 1.4. Disclosure of financial support and information use 1.5. Acknowledgements 1.6. Author contributions and use of impersonal and personal pronouns 2. Biological background 2.1. The complexity of the eukaryotic genome 2.2. The problem of counting and defining “genes” in eukaryotes 2.3. The “function” concept for genes and “dark matter” 2.4. Increases of organismal complexity on Earth through multicellularity 2.5. Multicellularity is a “fitness transition” in individuality 2.6. The complexity of cell differentiation in multicellularity 3. Technical background 3.1. The Phylogenetic Comparative Method (PCM) 3.2. RNA secondary structure prediction 3.3. Some standards for genome and gene annotation 4. What is in a eukaryotic genome? GenomeContent provides a good answer 4.1. Background 4.2. Motivation: an interoperable tool for data retrieval of gene annotations 4.3. Methods 4.4. Results 4.5. Discussion 5. The evolutionary correlation between genome size and ncDNA 5.1. Background 5.2. Motivation: estimating the relationship between genome size and ncDNA 5.3. Methods 5.4. Results 5.5. Discussion 6. The relationship between non-coding DNA and Complex Multicellularity 6.1. Background 6.2. Motivation: How to define and measure complex multicellularity across eukaryotes? 6.3. Methods 6.4. Results 6.5. Discussion 7. The ceRNA motif pipeline: regulation of microRNAs by target mimics 7.1. Background 7.2. A revisited protocol for the computational analysis of Target Mimics 7.3. Motivation: a novel pipeline for ceRNA motif discovery 7.4. Methods 7.5. Results 7.6. Discussion 8. Conclusions and outlook 8.1. Contributions and lessons for the bioinformatics of large-scale comparative analyses 8.2. Intron features are evolutionarily decoupled among themselves and from genome size throughout Eukarya 8.3. “Complex multicellularity” is a major evolutionary transition 8.4. Role of RNA throughout the evolution of life and complex multicellularity on Earth 9. Supplementary Data Bibliography Curriculum Scientiae Selbständigkeitserklärung (declaration of authorship
    corecore