3,503 research outputs found

    Genetic programming in data mining for drug discovery

    Get PDF
    Genetic programming (GP) is used to extract from rat oral bioavailability (OB) measurements simple, interpretable and predictive QSAR models which both generalise to rats and to marketed drugs in humans. Receiver Operating Characteristics (ROC) curves for the binary classier produced by machine learning show no statistical dierence between rats (albeit without known clearance dierences) and man. Thus evolutionary computing oers the prospect of in silico ADME screening, e.g. for \virtual" chemicals, for pharmaceutical drug discovery

    Use of quercetin in animal feed : effects on the P-gp expression and pharmacokinetics of orally administrated enrofloxacin in chicken

    Get PDF
    Modulation of P-glycoprotein (P-gp, encoded by Mdr1) by xenobiotics plays central role in pharmacokinetics of various drugs. Quercetin has a potential to modulate P-gp in rodents, however, its effects on P-gp modulation in chicken are still unclear. Herein, study reports role of quercetin in modulation of P-gp expression and subsequent effects on the pharmacokinetics of enrofloxacin in broilers. Results show that P-gp expression was increased in a dose-dependent manner following exposure to quercetin in Caco-2 cells and tissues of chicken. Absorption rate constant and apparent permeability coefficient of rhodamine 123 were decreased, reflecting efflux function of P-gp in chicken intestine increased by quercetin. Quercetin altered pharmacokinetic of enrofloxacin by decreasing area under curve, peak concentration, and time to reach peak concentration and by increasing clearance rate. Molecular docking shows quercetin can form favorable interactions with binding pocket of chicken xenobiotic receptor (CXR). Results provide convincing evidence that quercetin induced P-gp expression in tissues by possible interaction with CXR, and consequently reducing bioavailability of orally administered enrofloxacin through restricting its intestinal absorption and liver/kidney clearance in broilers. The results can be further extended to guide reasonable use of quercetin to avoid drug-feed interaction occurred with co-administered enrofloxacin or other similar antimicrobials.Peer reviewedFinal Published versio

    Review of QSAR Models and Software Tools for predicting Biokinetic Properties

    Get PDF
    In the assessment of industrial chemicals, cosmetic ingredients, and active substances in pesticides and biocides, metabolites and degradates are rarely tested for their toxicologcal effects in mammals. In the interests of animal welfare and cost-effectiveness, alternatives to animal testing are needed in the evaluation of these types of chemicals. In this report we review the current status of various types of in silico estimation methods for Absorption, Distribution, Metabolism and Excretion (ADME) properties, which are often important in discriminating between the toxicological profiles of parent compounds and their metabolites/degradation products. The review was performed in a broad sense, with emphasis on QSARs and rule-based approaches and their applicability to estimation of oral bioavailability, human intestinal absorption, blood-brain barrier penetration, plasma protein binding, metabolism and. This revealed a vast and rapidly growing literature and a range of software tools. While it is difficult to give firm conclusions on the applicability of such tools, it is clear that many have been developed with pharmaceutical applications in mind, and as such may not be applicable to other types of chemicals (this would require further research investigation). On the other hand, a range of predictive methodologies have been explored and found promising, so there is merit in pursuing their applicability in the assessment of other types of chemicals and products. Many of the software tools are not transparent in terms of their predictive algorithms or underlying datasets. However, the literature identifies a set of commonly used descriptors that have been found useful in ADME prediction, so further research and model development activities could be based on such studies.JRC.DG.I.6-Systems toxicolog

    The Use of ROC Analysis for the Qualitative Prediction of Human Oral Bioavailability from Animal Data

    Get PDF
    PURPOSE: To develop and evaluate a tool for the qualitative prediction of human oral bioavailability (F(human)) from animal oral bioavailability (F(animal)) data employing ROC analysis and to identify the optimal thresholds for such predictions. METHODS: A dataset of 184 compounds with known F(human) and F(animal) in at least one species (mouse, rat, dog and non-human primates (NHP)) was employed. A binary classification model for F(human) was built by setting a threshold for high/low F(human) at 50%. The thresholds for high/low F(animal) were varied from 0 to 100 to generate the ROC curves. Optimal thresholds were derived from ‘cost analysis’ and the outcomes with respect to false negative and false positive predictions were analyzed against the BDDCS class distributions. RESULTS: We successfully built ROC curves for the combined dataset and per individual species. Optimal F(animal) thresholds were found to be 67% (mouse), 22% (rat), 58% (dog), 35% (NHP) and 47% (combined dataset). No significant trends were observed when sub-categorizing the outcomes by the BDDCS. CONCLUSIONS: F(animal) can predict high/low F(human) with adequate sensitivity and specificity. This methodology and associated thresholds can be employed as part of decisions related to planning necessary studies during development of new drug candidates and lead selection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11095-013-1193-2) contains supplementary material, which is available to authorized users

    Data-driven modeling of the bicalutamide dissolution from powder systems

    Get PDF
    Low solubility of active pharmaceutical compounds (APIs) remains an important challenge in dosage form development process. In the manuscript, empirical models were developed and analyzed in order to predict dissolution of bicalutamide (BCL) from solid dispersion with various carriers. BCL was chosen as an example of a poor watersoluble API. Two separate datasets were created: one from literature data and another based on in-house experimental data. Computational experiments were conducted using artificial intelligence tools based on machine learning (AI/ML) with a plethora of techniques including artificial neural networks, decision trees, rule-based systems, and evolutionary computations. The latter resulting in classical mathematical equations provided models characterized by the lowest prediction error. In-house data turned out to be more homogeneous, as well as formulations were more extensively characterized than literature-based data. Thus, in-house data resulted in better models than literature-based data set. Among the other covariates, the best model uses for prediction of BCL dissolution profile the transmittance from IR spectrum at 1260 cm−1 wavenumber. Ab initio modeling–based in silico simulations were conducted to reveal potential BCL–excipients interaction. All crucial variables were selected automatically by AI/ML tools and resulted in reasonably simple and yet predictive models suitable for application in Quality by Design (QbD) approaches. Presented data-driven model development using AI/ML could be useful in various problems in the field of pharmaceutical technology, resulting in both predictive and investigational tools revealing new knowledge

    A Study of Geometric Semantic Genetic Programming with Linear Scaling

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceMachine Learning (ML) is a scientific discipline that endeavors to enable computers to learn without the need for explicit programming. Evolutionary Algorithms (EAs), a subset of ML algorithms, mimic Darwin’s Theory of Evolution by using natural selection mechanisms (i.e., survival of the fittest) to evolve a group of individuals (i.e., possible solutions to a given problem). Genetic Programming (GP) is the most recent type of EA and it evolves computer programs (i.e., individuals) to map a set of input data into known expected outputs. Geometric Semantic Genetic Programming (GSGP) extends this concept by allowing individuals to evolve and vary in the semantic space, where the output vectors are located, rather than being constrained by syntaxbased structures. Linear Scaling (LS) is a method that was introduced to facilitate the task of GP of searching for the best function matching a set of known data. GSGP and LS have both, independently, shown the ability to outperform standard GP for symbolic regression. GSGP uses Geometric Semantic Operators (GSOs), different from the standard ones, without altering the fitness, while LS modifies the fitness without altering the genetic operators. To the best of our knowledge, there has been no prior utilization of the combined methodology of GSGP and LS for classification problems. Furthermore, despite the fact that they have been used together in one practical regression application, a methodological evaluation of the advantages and disadvantages of integrating these methods for regression or classification problems has never been performed. In this dissertation, a study of a system that integrates both GSGP and LS (GSGP-LS) is presented. The performance of the proposed method, GSGPLS, was tested on six hand-tailored regression benchmarks, nine real-life regression problems and three real-life classification problems. The obtained results indicate that GSGP-LS outperforms GSGP in the majority of the cases, confirming the expected benefit of this integration. However, for some particularly hard regression datasets, GSGP-LS overfits training data, being outperformed by GSGP on unseen data. This contradicts the idea that LS is always beneficial for GP, warning the practitioners about its risk of overfitting in some specific cases.A Aprendizagem Automática (AA) é uma disciplina científica que se esforça por permitir que os computadores aprendam sem a necessidade de programação explícita. Algoritmos Evolutivos (AE),um subconjunto de algoritmos de ML, mimetizam a Teoria da Evolução de Darwin, usando a seleção natural e mecanismos de "sobrevivência dos mais aptos"para evoluir um grupo de indivíduos (ou seja, possíveis soluções para um problema dado). A Programação Genética (PG) é um processo algorítmico que evolui programas de computador (ou indivíduos) para ligar características de entrada e saída. A Programação Genética em Geometria Semântica (PGGS) estende esse conceito permitindo que os indivíduos evoluam e variem no espaço semântico, onde os vetores de saída estão localizados, em vez de serem limitados por estruturas baseadas em sintaxe. A Escala Linear (EL) é um método introduzido para facilitar a tarefa da PG de procurar a melhor função que corresponda a um conjunto de dados conhecidos. Tanto a PGGS quanto a EL demonstraram, independentemente, a capacidade de superar a PG padrão para regressão simbólica. A PGGS usa Operadores Semânticos Geométricos (OSGs), diferentes dos padrões, sem alterar o fitness, enquanto a EL modifica o fitness sem alterar os operadores genéticos. Até onde sabemos, não houve utilização prévia da metodologia combinada de PGGS e EL para problemas de classificação. Além disso, apesar de terem sido usados juntos em uma aplicação prática de regressão, nunca foi realizada uma avaliação metodológica das vantagens e desvantagens da integração desses métodos para problemas de regressão ou classificação. Nesta dissertação, é apresentado um estudo de um sistema que integra tanto a PGGS quanto a EL (PGGSEL). O desempenho do método proposto, PGGS-EL, foi testado em seis benchmarks de regressão personalizados, nove problemas de regressão da vida real e três problemas de classificação da vida real. Os resultados obtidos indicam que o PGGS-EL supera o PGGS na maioria dos casos, confirmando o benefício esperado desta integração. No entanto, para alguns conjuntos de dados de regressão particularmente difíceis, o PGGS-EL faz overfit aos dados de treino, obtendo piores resultados em comparação com PGGS em dados não vistos. Isso contradiz a ideia de que a EL é sempre benéfica para a PG, alertando os praticantes sobre o risco de overfitting em alguns casos específicos

    In Silico Resources to Assist in the Development and Evaluation of Physiologically-Based Kinetic Models

    Get PDF
    Since their inception in pharmaceutical applications, physiologically-based kinetic (PBK) models are increasingly being used across a range of sectors, such as safety assessment of cosmetics, food additives, consumer goods, pesticides and other chemicals. Such models can be used to construct organ-level concentration-time profiles of xenobiotics. These models are essential in determining the overall internal exposure to a chemical and hence its ability to elicit a biological response. There are a multitude of in silico resources available to assist in the construction and evaluation of PBK models. An overview of these resources is presented herein, encompassing all attributes required for PBK modelling. These include predictive tools and databases for physico-chemical properties and absorption, distribution, metabolism and elimination (ADME) related properties. Data sources for existing PBK models, bespoke PBK software and generic software that can assist in model development are also identified. On-going efforts to harmonise approaches to PBK model construction, evaluation and reporting that would help increase the uptake and acceptance of these models are also discussed
    • …
    corecore