12,675 research outputs found

    A generic optimising feature extraction method using multiobjective genetic programming

    Get PDF
    In this paper, we present a generic, optimising feature extraction method using multiobjective genetic programming. We re-examine the feature extraction problem and show that effective feature extraction can significantly enhance the performance of pattern recognition systems with simple classifiers. A framework is presented to evolve optimised feature extractors that transform an input pattern space into a decision space in which maximal class separability is obtained. We have applied this method to real world datasets from the UCI Machine Learning and StatLog databases to verify our approach and compare our proposed method with other reported results. We conclude that our algorithm is able to produce classifiers of superior (or equivalent) performance to the conventional classifiers examined, suggesting removal of the need to exhaustively evaluate a large family of conventional classifiers on any new problem. (C) 2010 Elsevier B.V. All rights reserved

    Feature selection for modular GA-based classification

    Get PDF
    Genetic algorithms (GAs) have been used as conventional methods for classifiers to adaptively evolve solutions for classification problems. Feature selection plays an important role in finding relevant features in classification. In this paper, feature selection is explored with modular GA-based classification. A new feature selection technique, Relative Importance Factor (RIF), is proposed to find less relevant features in the input domain of each class module. By removing these features, it is aimed to reduce the classification error and dimensionality of classification problems. Benchmark classification data sets are used to evaluate the proposed approach. The experiment results show that RIF can be used to find less relevant features and help achieve lower classification error with the feature space dimension reduced

    Modeling Stroke Diagnosis with the Use of Intelligent Techniques

    Get PDF
    The purpose of this work is to test the efficiency of specific intelligent classification algorithms when dealing with the domain of stroke medical diagnosis. The dataset consists of patient records of the ”Acute Stroke Unit”, Alexandra Hospital, Athens, Greece, describing patients suffering one of 5 different stroke types diagnosed by 127 diagnostic attributes / symptoms collected during the first hours of the emergency stroke situation as well as during the hospitalization and recovery phase of the patients. Prior to the application of the intelligent classifier the dimensionality of the dataset is further reduced using a variety of classic and state of the art dimensionality reductions techniques so as to capture the intrinsic dimensionality of the data. The results obtained indicate that the proposed methodology achieves prediction accuracy levels that are comparable to those obtained by intelligent classifiers trained on the original feature space
    corecore