127 research outputs found

    A survey on scheduling and mapping techniques in 3D Network-on-chip

    Full text link
    Network-on-Chips (NoCs) have been widely employed in the design of multiprocessor system-on-chips (MPSoCs) as a scalable communication solution. NoCs enable communications between on-chip Intellectual Property (IP) cores and allow those cores to achieve higher performance by outsourcing their communication tasks. Mapping and Scheduling methodologies are key elements in assigning application tasks, allocating the tasks to the IPs, and organising communication among them to achieve some specified objectives. The goal of this paper is to present a detailed state-of-the-art of research in the field of mapping and scheduling of applications on 3D NoC, classifying the works based on several dimensions and giving some potential research directions

    Side-Channel Protected MPSoC through Secure Real-Time Networks-on-Chip

    Get PDF
    The integration of Multi-Processors System-on-Chip (MPSoCs) into the Internet -of -Things (IoT) context brings new opportunities, but also represent risks. Tight real-time constraints and security requirements should be considered simultaneously when designing MPSoCs. Network-on-Chip (NoCs) are specially critical when meeting these two conflicting characteristics. For instance the NoC design has a huge influence in the security of the system. A vital threat to system security are so-called side-channel attacks based on the NoC communication observations. To this end, we propose a NoC security mechanism suitable for hard real-time systems, in which schedulability is a vital design requirement. We present three contributions. First, we show the impact of the NoC routing in the security of the system. Second, we propose a packet route randomisation mechanism to increase NoC resilience against side-channel attacks. Third, using an evolutionary optimisation approach, we effectively apply route randomisation while controlling its impact on hard real-time performance guarantees. Extensive experimental evidence based on analytical and simulation models supports our findings

    Self-adaptivity of applications on network on chip multiprocessors: the case of fault-tolerant Kahn process networks

    Get PDF
    Technology scaling accompanied with higher operating frequencies and the ability to integrate more functionality in the same chip has been the driving force behind delivering higher performance computing systems at lower costs. Embedded computing systems, which have been riding the same wave of success, have evolved into complex architectures encompassing a high number of cores interconnected by an on-chip network (usually identified as Multiprocessor System-on-Chip). However these trends are hindered by issues that arise as technology scaling continues towards deep submicron scales. Firstly, growing complexity of these systems and the variability introduced by process technologies make it ever harder to perform a thorough optimization of the system at design time. Secondly, designers are faced with a reliability wall that emerges as age-related degradation reduces the lifetime of transistors, and as the probability of defects escaping post-manufacturing testing is increased. In this thesis, we take on these challenges within the context of streaming applications running in network-on-chip based parallel (not necessarily homogeneous) systems-on-chip that adopt the no-remote memory access model. In particular, this thesis tackles two main problems: (1) fault-aware online task remapping, (2) application-level self-adaptation for quality management. For the former, by viewing fault tolerance as a self-adaptation aspect, we adopt a cross-layer approach that aims at graceful performance degradation by addressing permanent faults in processing elements mostly at system-level, in particular by exploiting redundancy available in multi-core platforms. We propose an optimal solution based on an integer linear programming formulation (suitable for design time adoption) as well as heuristic-based solutions to be used at run-time. We assess the impact of our approach on the lifetime reliability. We propose two recovery schemes based on a checkpoint-and-rollback and a rollforward technique. For the latter, we propose two variants of a monitor-controller- adapter loop that adapts application-level parameters to meet performance goals. We demonstrate not only that fault tolerance and self-adaptivity can be achieved in embedded platforms, but also that it can be done without incurring large overheads. In addressing these problems, we present techniques which have been realized (depending on their characteristics) in the form of a design tool, a run-time library or a hardware core to be added to the basic architecture

    Multiprocessor System-on-Chips based Wireless Sensor Network Energy Optimization

    Get PDF
    Wireless Sensor Network (WSN) is an integrated part of the Internet-of-Things (IoT) used to monitor the physical or environmental conditions without human intervention. In WSN one of the major challenges is energy consumption reduction both at the sensor nodes and network levels. High energy consumption not only causes an increased carbon footprint but also limits the lifetime (LT) of the network. Network-on-Chip (NoC) based Multiprocessor System-on-Chips (MPSoCs) are becoming the de-facto computing platform for computationally extensive real-time applications in IoT due to their high performance and exceptional quality-of-service. In this thesis a task scheduling problem is investigated using MPSoCs architecture for tasks with precedence and deadline constraints in order to minimize the processing energy consumption while guaranteeing the timing constraints. Moreover, energy-aware nodes clustering is also performed to reduce the transmission energy consumption of the sensor nodes. Three distinct problems for energy optimization are investigated given as follows: First, a contention-aware energy-efficient static scheduling using NoC based heterogeneous MPSoC is performed for real-time tasks with an individual deadline and precedence constraints. An offline meta-heuristic based contention-aware energy-efficient task scheduling is developed that performs task ordering, mapping, and voltage assignment in an integrated manner. Compared to state-of-the-art scheduling our proposed algorithm significantly improves the energy-efficiency. Second, an energy-aware scheduling is investigated for a set of tasks with precedence constraints deploying Voltage Frequency Island (VFI) based heterogeneous NoC-MPSoCs. A novel population based algorithm called ARSH-FATI is developed that can dynamically switch between explorative and exploitative search modes at run-time. ARSH-FATI performance is superior to the existing task schedulers developed for homogeneous VFI-NoC-MPSoCs. Third, the transmission energy consumption of the sensor nodes in WSN is reduced by developing ARSH-FATI based Cluster Head Selection (ARSH-FATI-CHS) algorithm integrated with a heuristic called Novel Ranked Based Clustering (NRC). In cluster formation parameters such as residual energy, distance parameters, and workload on CHs are considered to improve LT of the network. The results prove that ARSH-FATI-CHS outperforms other state-of-the-art clustering algorithms in terms of LT.University of Derby, Derby, U

    A Survey and Comparative Study of Hard and Soft Real-time Dynamic Resource Allocation Strategies for Multi/Many-core Systems

    Get PDF
    Multi-/many-core systems are envisioned to satisfy the ever-increasing performance requirements of complex applications in various domains such as embedded and high-performance computing. Such systems need to cater to increasingly dynamic workloads, requiring efficient dynamic resource allocation strategies to satisfy hard or soft real-time constraints. This article provides an extensive survey of hard and soft real-time dynamic resource allocation strategies proposed since the mid-1990s and highlights the emerging trends for multi-/many-core systems. The survey covers a taxonomy of the resource allocation strategies and considers their various optimization objectives, which have been used to provide comprehensive comparison. The strategies employ various principles, such as market and biological concepts, to perform the optimizations. The trend followed by the resource allocation strategies, open research challenges, and likely emerging research directions have also been provided

    Hard real-time guarantee of automotive applications during mode changes

    Get PDF
    This paper presents a resource allocation approach that benefits from modal nature of hard-real time systems under consideration. The modal nature determines the operational modes of the systems. Thanks to the modal nature of these systems, it is possible to decrease the number of active cores consuming high power in certain modes, leading to considerable energy savings while still not violating any of timing constraints. The proposed approach consists of both off-line and on-line steps. More computational intensive steps are performed off-line, whereas only detection of the current mode and mode switching are performed online. In the presented automotive use case, the number of required cores has been decreased up to 75% in a particular mode and relatively low amount of data is to be migrated during the mode change

    Contention energy-aware real-time task mapping on NoC based heterogeneous MPSoCs

    Get PDF
    © 2018 IEEE. Network-on-Chip (NoC)-based multiprocessor system-on-chips (MPSoCs) are becoming the de-facto computing platform for computationally intensive real-time applications in the embedded systems due to their high performance, exceptional quality-of-service (QoS) and energy efficiency over superscalar uniprocessor architectures. Energy saving is important in the embedded system because it reduces the operating cost while prolongs lifetime and improves the reliability of the system. In this paper, contention-aware energy efficient static mapping using NoC-based heterogeneous MPSoC for real-time tasks with an individual deadline and precedence constraints is investigated. Unlike other schemes task ordering, mapping, and voltage assignment are performed in an integrated manner to minimize the processing energy while explicitly reduce contention between the communications and communication energy. Furthermore, both dynamic voltage and frequency scaling and dynamic power management are used for energy consumption optimization. The developed contention-aware integrated task mapping and voltage assignment (CITM-VA) static energy management scheme performs tasks ordering using earliest latest finish time first (ELFTF) strategy that assigns priorities to the tasks having shorter latest finish time (LFT) over the tasks with longer LFT. It remaps every task to a processor and/or discrete voltage level that reduces processing energy consumption. Similarly, the communication energy is minimized by assigning discrete voltage levels to the NoC links. Further, total energy efficiency is achieved by putting the processor into a low-power state when feasible. Moreover, this approach resolves the contention between communications that traverse the same link by allocating links to communications with higher priority. The results obtained through extensive simulations of real-world benchmarks demonstrate that CITM-VA approach outperforms state-of-the-art technique and achieves an average 30% total energy improvement. Additionally, it maintains high QoS and robustness for real-time applications
    corecore