1,579 research outputs found

    Improving detection of apneic events by learning from examples and treatment of missing data

    Get PDF
    The final publication is available at IOS Press through http://dx.doi.org/10.3233/978-1-61499-474-9-213[Abstract] This paper presents a comparative study over the respiratory pattern classification task involving three missing data imputation techniques, and four different machine learning algorithms. The main goal was to find a classifier that achieves the best accuracy results using a scalable imputation method in comparison to the method used in a previous work of the authors. The results obtained show that the Self-organization maps imputation method allows any classifier to achieve improvements over the rest of the imputation methods, and that the Feedforward neural network classifier offers the best performance regardless the imputation method used

    Automated sleep classification using the new sleep stage standards

    Get PDF
    Sleep is fundamental for physical health and good quality of life, and clinicians and researchers have long debated how best to understand it. Manual approaches to sleep classification have been in use for over 40 years, and in 2007, the American Academy of Sleep Medicine (AASM) published a new sleep scoring manual. Over the years, many attempts have been made to introduce and validate machine learning and automated classification techniques in the sleep research field, with the goals of improving consistency and reliability. This thesis explored and assessed the use of automated classification systems with the updated sleep stage definitions and scoring rules using neuro-fuzzy system (NFS) and support vector machine (SVM) methodology. For both the NFS and SVM classification techniques, the overall percent correct was approximately 65%, with sensitivity and specificity rates around 80% and 95%, respectively. The overall Kappa scores, one means for evaluating system reliability, were approximately 0.57 for both the NFS and SVM, indicating moderate agreement that is not accidental. Stage 3 sleep was detected with an 87-89% success rate. The results presented in this thesis show that the use of NFS and SVM methods for classifying sleep stages is possible using the new AASM guidelines. While the current work supports and confirms the use of these classification techniques within the research community, the results did not indicate a significant difference in the accuracy of either approach-nor a difference in one over the other. The results suggest that the important clinical stage 3 (slow wave sleep) can be accurately scored with these classifiers; however, the techniques used here would need more investigation and optimization prior to serious use in clinical applications

    Automatic classification of respiratory patterns involving missing data imputation techniques

    Get PDF
    [Abstract] A comparative study of the respiratory pattern classification task, involving five missing data imputation techniques and several machine learning algorithms is presented in this paper. The main goal was to find a classifier that achieves the best accuracy results using a scalable imputation method in comparison to the method used in a previous work of the authors. The results obtained show that in general, the Self-Organising Map imputation method allows non-tree based classifiers to achieve improvements over the rest of the imputation methods in terms of the classification accuracy, and that the Feedforward neural network and the Random Forest classifiers offer the best performance regardless of the imputation method used. The improvements in terms of accuracy over the previous work of the authors are limited but the Feed Forward neural network model achieves promising results.Ministerio de Economía y Competitividad; TIN 2013-40686-PXunta de Galicia; GRC2014/35

    A Review on Machine Learning Techniques for Neurological Disorders Estimation by Analyzing EEG Waves

    Get PDF
    With the fast improvement of neuroimaging data acquisition strategies, there has been a significant growth in learning neurological disorders among data mining and machine learning communities. Neurological disorders are the ones that impact the central nervous system (including the human brain) and also include over 600 disorders ranging from brain aneurysm to epilepsy. Every year, based on World Health Organization (WHO), neurological disorders affect much more than one billion people worldwide and count for up to seven million deaths. Hence, useful investigation of neurological disorders is actually of great value. The vast majority of datasets useful for diagnosis of neurological disorders like electroencephalogram (EEG) are actually complicated and poses challenges that are many for data mining and machine learning algorithms due to their increased dimensionality, non stationarity, and non linearity. Hence, an better feature representation is actually key to an effective suite of data mining and machine learning algorithms in the examination of neurological disorders. With this exploration, we use a well defined EEG dataset to train as well as test out models. A preprocessing stage is actually used to extend, arrange and manipulate the framework of free data sets to the needs of ours for better training and tests results. Several techniques are used by us to enhance system accuracy. This particular paper concentrates on dealing with above pointed out difficulties and appropriately analyzes different EEG signals that would in turn help us to boost the procedure of feature extraction and enhance the accuracy in classification. Along with acknowledging above issues, this particular paper proposes a framework that would be useful in determining man stress level and also as a result, differentiate a stressed or normal person/subject

    HyCLASSS: A Hybrid Classifier for Automatic Sleep Stage Scoring

    Get PDF
    Automatic identification of sleep stage is an important step in a sleep study. In this paper, we propose a hybrid automatic sleep stage scoring approach, named HyCLASSS, based on single channel electroencephalogram (EEG). HyCLASSS, for the first time, leverages both signal and stage transition features of human sleep for automatic identification of sleep stages. HyCLASSS consists of two parts: A random forest classifier and correction rules. Random forest classifier is trained using 30 EEG signal features, including temporal, frequency, and nonlinear features. The correction rules are constructed based on stage transition feature, importing the continuity property of sleep, and characteristic of sleep stage transition. Compared with the gold standard of manual scoring using Rechtschaffen and Kales criterion, the overall accuracy and kappa coefficient applied on 198 subjects has reached 85.95% and 0.8046 in our experiment, respectively. The performance of HyCLASS compared favorably to previous work, and it could be integrated with sleep evaluation or sleep diagnosis system in the future

    Assessment of Dispersion and Bubble Entropy Measures for Enhancing Preterm Birth Prediction Based on Electrohysterographic Signals

    Full text link
    [EN] One of the remaining challenges for the scientific-technical community is predicting preterm births, for which electrohysterography (EHG) has emerged as a highly sensitive prediction technique. Sample and fuzzy entropy have been used to characterize EHG signals, although they require optimizing many internal parameters. Both bubble entropy, which only requires one internal parameter, and dispersion entropy, which can detect any changes in frequency and amplitude, have been proposed to characterize biomedical signals. In this work, we attempted to determine the clinical value of these entropy measures for predicting preterm birth by analyzing their discriminatory capacity as an individual feature and their complementarity to other EHG characteristics by developing six prediction models using obstetrical data, linear and non-linear EHG features, and linear discriminant analysis using a genetic algorithm to select the features. Both dispersion and bubble entropy better discriminated between the preterm and term groups than sample, spectral, and fuzzy entropy. Entropy metrics provided complementary information to linear features, and indeed, the improvement in model performance by including other non-linear features was negligible. The best model performance obtained an F1-score of 90.1 ± 2% for testing the dataset. This model can easily be adapted to real-time applications, thereby contributing to the transferability of the EHG technique to clinical practice.This work was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR), and by the Generalitat Valenciana (AICO/2019/220)Nieto Del-Amor, F.; Beskhani, R.; Ye Lin, Y.; Garcia-Casado, J.; Díaz-Martínez, MDA.; Monfort-Ortiz, R.; Diago-Almela, VJ.... (2021). Assessment of Dispersion and Bubble Entropy Measures for Enhancing Preterm Birth Prediction Based on Electrohysterographic Signals. Sensors. 21(18):1-17. https://doi.org/10.3390/s21186071S117211

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Survey on Neuro-Fuzzy systems and their applications in technical diagnostics and measurement

    Get PDF
    Both fuzzy logic, as the basis of many inference systems, and Neural Networks, as a powerful computational model for classification and estimation, have been used in many application fields since their birth. These two techniques are somewhat supplementary to each other in a way that what one is lacking of the other can provide. This led to the creation of Neuro-Fuzzy systems which utilize fuzzy logic to construct a complex model by extending the capabilities of Artificial Neural Networks. Generally speaking all type of systems that integrate these two techniques can be called Neuro-Fuzzy systems. Key feature of these systems is that they use input-output patterns to adjust the fuzzy sets and rules inside the model. The paper reviews the principles of a Neuro-Fuzzy system and the key methods presented in this field, furthermore provides survey on their applications for technical diagnostics and measurement. © 2015 Elsevier Ltd
    corecore