2,639 research outputs found

    The Univariate Marginal Distribution Algorithm Copes Well With Deception and Epistasis

    Full text link
    In their recent work, Lehre and Nguyen (FOGA 2019) show that the univariate marginal distribution algorithm (UMDA) needs time exponential in the parent populations size to optimize the DeceptiveLeadingBlocks (DLB) problem. They conclude from this result that univariate EDAs have difficulties with deception and epistasis. In this work, we show that this negative finding is caused by an unfortunate choice of the parameters of the UMDA. When the population sizes are chosen large enough to prevent genetic drift, then the UMDA optimizes the DLB problem with high probability with at most λ(n2+2elnn)\lambda(\frac{n}{2} + 2 e \ln n) fitness evaluations. Since an offspring population size λ\lambda of order nlognn \log n can prevent genetic drift, the UMDA can solve the DLB problem with O(n2logn)O(n^2 \log n) fitness evaluations. In contrast, for classic evolutionary algorithms no better run time guarantee than O(n3)O(n^3) is known (which we prove to be tight for the (1+1){(1+1)} EA), so our result rather suggests that the UMDA can cope well with deception and epistatis. From a broader perspective, our result shows that the UMDA can cope better with local optima than evolutionary algorithms; such a result was previously known only for the compact genetic algorithm. Together with the lower bound of Lehre and Nguyen, our result for the first time rigorously proves that running EDAs in the regime with genetic drift can lead to drastic performance losses

    Improved Runtime Bounds for the Univariate Marginal Distribution Algorithm via Anti-Concentration

    Get PDF
    Unlike traditional evolutionary algorithms which produce offspring via genetic operators, Estimation of Distribution Algorithms (EDAs) sample solutions from probabilistic models which are learned from selected individuals. It is hoped that EDAs may improve optimisation performance on epistatic fitness landscapes by learning variable interactions. However, hardly any rigorous results are available to support claims about the performance of EDAs, even for fitness functions without epistasis. The expected runtime of the Univariate Marginal Distribution Algorithm (UMDA) on OneMax was recently shown to be in O(nλlogλ)\mathcal{O}\left(n\lambda\log \lambda\right) by Dang and Lehre (GECCO 2015). Later, Krejca and Witt (FOGA 2017) proved the lower bound Ω(λn+nlogn)\Omega\left(\lambda\sqrt{n}+n\log n\right) via an involved drift analysis. We prove a O(nλ)\mathcal{O}\left(n\lambda\right) bound, given some restrictions on the population size. This implies the tight bound Θ(nlogn)\Theta\left(n\log n\right) when λ=O(logn)\lambda=\mathcal{O}\left(\log n\right), matching the runtime of classical EAs. Our analysis uses the level-based theorem and anti-concentration properties of the Poisson-Binomial distribution. We expect that these generic methods will facilitate further analysis of EDAs.Comment: 19 pages, 1 figur

    Upper Bounds on the Runtime of the Univariate Marginal Distribution Algorithm on OneMax

    Full text link
    A runtime analysis of the Univariate Marginal Distribution Algorithm (UMDA) is presented on the OneMax function for wide ranges of its parameters μ\mu and λ\lambda. If μclogn\mu\ge c\log n for some constant c>0c>0 and λ=(1+Θ(1))μ\lambda=(1+\Theta(1))\mu, a general bound O(μn)O(\mu n) on the expected runtime is obtained. This bound crucially assumes that all marginal probabilities of the algorithm are confined to the interval [1/n,11/n][1/n,1-1/n]. If μcnlogn\mu\ge c' \sqrt{n}\log n for a constant c>0c'>0 and λ=(1+Θ(1))μ\lambda=(1+\Theta(1))\mu, the behavior of the algorithm changes and the bound on the expected runtime becomes O(μn)O(\mu\sqrt{n}), which typically even holds if the borders on the marginal probabilities are omitted. The results supplement the recently derived lower bound Ω(μn+nlogn)\Omega(\mu\sqrt{n}+n\log n) by Krejca and Witt (FOGA 2017) and turn out as tight for the two very different values μ=clogn\mu=c\log n and μ=cnlogn\mu=c'\sqrt{n}\log n. They also improve the previously best known upper bound O(nlognloglogn)O(n\log n\log\log n) by Dang and Lehre (GECCO 2015).Comment: Version 4: added illustrations and experiments; improved presentation in Section 2.2; to appear in Algorithmica; the final publication is available at Springer via http://dx.doi.org/10.1007/s00453-018-0463-

    On the limitations of the univariate marginal distribution algorithm to deception and where bivariate EDAs might help

    Get PDF
    We introduce a new benchmark problem called Deceptive Leading Blocks (DLB) to rigorously study the runtime of the Univariate Marginal Distribution Algorithm (UMDA) in the presence of epistasis and deception. We show that simple Evolutionary Algorithms (EAs) outperform the UMDA unless the selective pressure μ/λ\mu/\lambda is extremely high, where μ\mu and λ\lambda are the parent and offspring population sizes, respectively. More precisely, we show that the UMDA with a parent population size of μ=Ω(logn)\mu=\Omega(\log n) has an expected runtime of eΩ(μ)e^{\Omega(\mu)} on the DLB problem assuming any selective pressure μλ141000\frac{\mu}{\lambda} \geq \frac{14}{1000}, as opposed to the expected runtime of O(nλlogλ+n3)\mathcal{O}(n\lambda\log \lambda+n^3) for the non-elitist (μ,λ) EA(\mu,\lambda)~\text{EA} with μ/λ1/e\mu/\lambda\leq 1/e. These results illustrate inherent limitations of univariate EDAs against deception and epistasis, which are common characteristics of real-world problems. In contrast, empirical evidence reveals the efficiency of the bi-variate MIMIC algorithm on the DLB problem. Our results suggest that one should consider EDAs with more complex probabilistic models when optimising problems with some degree of epistasis and deception.Comment: To appear in the 15th ACM/SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA XV), Potsdam, German

    Runtime analysis of the univariate marginal distribution algorithm under low selective pressure and prior noise

    Get PDF
    We perform a rigorous runtime analysis for the Univariate Marginal Distribution Algorithm on the LeadingOnes function, a well-known benchmark function in the theory community of evolutionary computation with a high correlation between decision variables. For a problem instance of size nn, the currently best known upper bound on the expected runtime is O(nλlogλ+n2)\mathcal{O}(n\lambda\log\lambda+n^2) (Dang and Lehre, GECCO 2015), while a lower bound necessary to understand how the algorithm copes with variable dependencies is still missing. Motivated by this, we show that the algorithm requires a eΩ(μ)e^{\Omega(\mu)} runtime with high probability and in expectation if the selective pressure is low; otherwise, we obtain a lower bound of Ω(nλlog(λμ))\Omega(\frac{n\lambda}{\log(\lambda-\mu)}) on the expected runtime. Furthermore, we for the first time consider the algorithm on the function under a prior noise model and obtain an O(n2)\mathcal{O}(n^2) expected runtime for the optimal parameter settings. In the end, our theoretical results are accompanied by empirical findings, not only matching with rigorous analyses but also providing new insights into the behaviour of the algorithm.Comment: To appear at GECCO 2019, Prague, Czech Republi

    From Understanding Genetic Drift to a Smart-Restart Mechanism for Estimation-of-Distribution Algorithms

    Full text link
    Estimation-of-distribution algorithms (EDAs) are optimization algorithms that learn a distribution on the search space from which good solutions can be sampled easily. A key parameter of most EDAs is the sample size (population size). If the population size is too small, the update of the probabilistic model builds on few samples, leading to the undesired effect of genetic drift. Too large population sizes avoid genetic drift, but slow down the process. Building on a recent quantitative analysis of how the population size leads to genetic drift, we design a smart-restart mechanism for EDAs. By stopping runs when the risk for genetic drift is high, it automatically runs the EDA in good parameter regimes. Via a mathematical runtime analysis, we prove a general performance guarantee for this smart-restart scheme. This in particular shows that in many situations where the optimal (problem-specific) parameter values are known, the restart scheme automatically finds these, leading to the asymptotically optimal performance. We also conduct an extensive experimental analysis. On four classic benchmark problems, we clearly observe the critical influence of the population size on the performance, and we find that the smart-restart scheme leads to a performance close to the one obtainable with optimal parameter values. Our results also show that previous theory-based suggestions for the optimal population size can be far from the optimal ones, leading to a performance clearly inferior to the one obtained via the smart-restart scheme. We also conduct experiments with PBIL (cross-entropy algorithm) on two combinatorial optimization problems from the literature, the max-cut problem and the bipartition problem. Again, we observe that the smart-restart mechanism finds much better values for the population size than those suggested in the literature, leading to a much better performance.Comment: Accepted for publication in "Journal of Machine Learning Research". Extended version of our GECCO 2020 paper. This article supersedes arXiv:2004.0714

    Coherence freeze in an optical lattice investigated via pump-probe spectroscopy

    Full text link
    Motivated by our observation of fast echo decay and a surprising coherence freeze, we have developed a pump-probe spectroscopy technique for vibrational states of ultracold 85^{85}Rb atoms in an optical lattice to gain information about the memory dynamics of the system. We use pump-probe spectroscopy to monitor the time-dependent changes of frequencies experienced by atoms and to characterize the probability distribution of these frequency trajectories. We show that the inferred distribution, unlike a naive microscopic model of the lattice, correctly predicts the main features of the observed echo decay.Comment: 4 pages, 5 figure
    corecore