267 research outputs found

    Intelligent approaches in locomotion - a review

    Get PDF

    Reinforcement Learning Algorithms in Humanoid Robotics

    Get PDF

    Trajectory planning for biped robot walking on uneven terrain – Taking stepping as an example

    Get PDF
    Abstract According to the features of movements of humanoid robot, a control system for humanoid robot walking on uneven terrain is present. Constraints of stepping over stairs are analyzed and the trajectories of feet are calculated by intelligent computing methods. To overcome the shortcomings resulted from directly controlling the robot by neural network (NN) and fuzzy logic controller (FLC), a revised particle swarm optimization (PSO) algorithm is proposed to train the weights of NN and rules of FLC. Simulations and experiments on different control methods are achieved for a detailed comparison. The results show that using the proposed methods can obtain better control effect

    Implementation and Integration of Fuzzy Algorithms for Descending Stair of KMEI Humanoid Robot

    Get PDF
    Locomotion of humanoid robot depends on the mechanical characteristic of the robot. Walking on descending stairs with integrated control systems for the humanoid robot is proposed. The analysis of trajectory for descending stairs is calculated by the constrains of step length stair using fuzzy algorithm. The established humanoid robot on dynamically balance on this matter of zero moment point has been pretended to be consisting of single support phase and double support phase. Walking transition from single support phase to double support phase is needed for a smooth transition cycle. To accomplish the problem, integrated motion and controller are divided into two conditions: motion working on offline planning and controller working online walking gait generation. To solve the defect during locomotion of the humanoid robot, it is directly controlled by the fuzzy logic controller. This paper verified the simulation and the experiment for descending stair of KMEI humanoid robot.&nbsp

    Efficient PID Controller based Hexapod Wall Following Robot

    Get PDF
    This paper presents a design of wall followingbehaviour for hexapod robot based on PID controller. PIDcontroller is proposed here because of its ability to controlmany cases of non-linear systems. In this case, we proposed aPID controller to improve the speed and stability of hexapodrobot movement while following the wall. In this paper, PIDcontroller is used to control the robot legs, by adjusting thevalue of swing angle during forward or backward movement tomaintain the distance between the robot and the wall. Theexperimental result was verified by implementing the proposedcontrol method into actual prototype of hexapod robot

    Parallelized Distributed Embedded Control System for 2D Walking Robot for Studying Rough Terrain Locomotion

    Get PDF
    Biped robots present many advantages for exploration over mobile robots. They do not require a continuous path, which allows them to navigate over a much larger range of terrain. Currently, bipeds have been successful at walking on flat surfaces and non-periodic rough terrain such as stairs, but few have shown success on unknown periodic terrain. The Jaywalker is a 2D walker designed to study locomotion on uneven terrain. It is a fully active robot providing actuation at every joint. A distributed, parallelized, embedded control system was developed to provide the control structure for the Jaywalker. This system was chosen for its ability to execute simultaneous tasks efficiently. The two level control system provides a first level to implement a higher level control strategy, and a second lower level to drive the Jaywalker's systems. The concept was implemented using the Parallax Propeller chip for its relative fast clock frequencies and parallel computing functionality. The chips communicate over a new variation of the I2C bus, which allows multiple slaves to listen to information simultaneously reducing the number of transmissions for redundant data transfers. The system has shown success in taking steps with open loop control. The success of the step is highly dependent on the initial step length using open loop control, but this dependency can be eliminated using closed loop control. The robust structure will provide an excellent platform for uneven terrain locomotion research

    Classical and intelligent methods in model extraction and stabilization of a dual-axis reaction wheel pendulum: A comparative study

    Get PDF
    Controlling underactuated open-loop unstable systems is challenging. In this study, first, both nonlinear and linear models of a dual-axis reaction wheel pendulum (DA-RWP) are extracted by employing Lagrangian equa-tions which are based on energy methods. Then to control the system and stabilize the pendulum's angle in the upright position, fuzzy logic based controllers for both x -y directions are developed. To show the efficiency of the designed intelligent controller, comparisons are made with its classical optimal control counterparts. In our simulations, as proof of the reliability and robustness of the fuzzy controller, two scenarios including noise -disturbance-free and noisy-disturbed situations are considered. The comparisons made between the classical and fuzzy-based controllers reveal the superiority of the proposed fuzzy logic controller, in terms of time response. The simulation results of our experiments in terms of both mathematical modeling and control can be deployed as a baseline for robotics and aerospace studies as developing walking humanoid robots and satellite attitude systems, respectively.The work of U.F.-G. was supported by the government of the Basque Country for the ELKARTEK21/10 KK-2021/00014 and ELKARTEK22/85 research programs, respectively
    corecore