3,534 research outputs found

    IEA ECES Annex 31 Final Report - Energy Storage with Energy Efficient Buildings and Districts: Optimization and Automation

    Get PDF
    At present, the energy requirements in buildings are majorly met from non-renewable sources where the contribution of renewable sources is still in its initial stage. Meeting the peak energy demand by non-renewable energy sources is highly expensive for the utility companies and it critically influences the environment through GHG emissions. In addition, renewable energy sources are inherently intermittent in nature. Therefore, to make both renewable and nonrenewable energy sources more efficient in building/district applications, they should be integrated with energy storage systems. Nevertheless, determination of the optimal operation and integration of energy storage with buildings/districts are not straightforward. The real strength of integrating energy storage technologies with buildings/districts is stalled by the high computational demand (or even lack of) tools and optimization techniques. Annex 31 aims to resolve this gap by critically addressing the challenges in integrating energy storage systems in buildings/districts from the perspective of design, development of simplified modeling tools and optimization techniques

    Energy Management Systems for Smart Electric Railway Networks: A Methodological Review

    Get PDF
    Energy shortage is one of the major concerns in today’s world. As a consumer of electrical energy, the electric railway system (ERS), due to trains, stations, and commercial users, intakes an enormous amount of electricity. Increasing greenhouse gases (GHG) and CO2 emissions, in addition, have drawn the regard of world leaders as among the most dangerous threats at present; based on research in this field, the transportation sector contributes significantly to this pollution. Railway Energy Management Systems (REMS) are a modern green solution that not only tackle these problems but also, by implementing REMS, electricity can be sold to the grid market. Researchers have been trying to reduce the daily operational costs of smart railway stations, mitigating power quality issues, considering the traction uncertainties and stochastic behavior of Renewable Energy Resources (RERs) and Energy Storage Systems (ESSs), which has a significant impact on total operational cost. In this context, the first main objective of this article is to take a comprehensive review of the literature on REMS and examine closely all the works that have been carried out in this area, and also the REMS architecture and configurations are clarified as well. The secondary objective of this article is to analyze both traditional and modern methods utilized in REMS and conduct a thorough comparison of them. In order to provide a comprehensive analysis in this field, over 120 publications have been compiled, listed, and categorized. The study highlights the potential of leveraging RERs for cost reduction and sustainability. Evaluating factors including speed, simplicity, efficiency, accuracy, and ability to handle stochastic behavior and constraints, the strengths and limitations of each optimization method are elucidated

    Optimal Flow for Multi-Carrier Energy System at Community Level

    Get PDF

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Two-stage stochastic programming for the design optimization of district cooling networks under demand and cost uncertainty

    Get PDF
    The major limitations of district cooling systems are the high capital costs, which make design optimization tools necessary to maximize the potential benefits. Decision makers when designing district cooling have to handle cost and demand uncertainties that further increase the investment risks. On the other hand, the possible evolution of cooling demand during the years, shall be taken into account in the first design stages, in order to allow network expansion in the future. In this paper, a novel two-stage stochastic programming model is therefore proposed for the optimal design of district cooling networks under demand and cost uncertainty. The model was also applied to a case study and the results showed that it is more convenient to build smaller district cooling networks (and eventually enhance them in the future if the cooling demand and electricity costs will increase) rather than building larger systems from the beginning. In addition, it was found that the uncertainties in electricity cost and cooling demand are the ones that most influence the optimal solution. The impact of the stochastic model was evaluated with respect to deterministic approaches, resulting up to 5% less expensive in terms of expected cost and with a three years lower payback time. A second model formulation was also implemented, with more rigid constraints, which limit the amount of pipes that can be installed in a single branch. With this formulation, the model tends to connect more buildings and to install larger pipes from the beginning, but the solution in terms of expected cost is only 0.4% more expensive than the more flexible one. Lastly, it was analysed the impact of asset residual value at the end of project life, revealing that neglecting it would lead to connecting more buildings initially, but in most scenarios the network would not be expanded in the future

    Demand-Response in Smart Buildings

    Get PDF
    This book represents the Special Issue of Energies, entitled “Demand-Response in Smart Buildings”, that was published in the section “Energy and Buildings”. This Special Issue is a collection of original scientific contributions and review papers that deal with smart buildings and communities. Demand response (DR) offers the capability to apply changes in the energy usage of consumers—from their normal consumption patterns—in response to changes in energy pricing over time. This leads to a lower energy demand during peak hours or during periods when an electricity grid’s reliability is put at risk. Therefore, demand response is a reduction in demand designed to reduce peak load or avoid system emergencies. Hence, demand response can be more cost-effective than adding generation capabilities to meet the peak and/or occasional demand spikes. The underlying objective of DR is to actively engage customers in modifying their consumption in response to pricing signals. Demand response is expected to increase energy market efficiency and the security of supply, which will ultimately benefit customers by way of options for managing their electricity costs leading to reduced environmental impact

    A Real-Time Rolling Horizon Chance Constrained Optimization Model for Energy Hub Scheduling

    Get PDF
    With the increasing consumption of energy, it is of high significance to improve energy efficiency and realize optimal operation of the multi-energy system. Among the many energy system modeling methods, the concept of “energy hub (EH)” is an emerging one. However, the previous EH models only included one or a few of constituting components. The construction of an energy hub model that integrates energy storage systems, photovoltaic (PV) components, a combined cooling heating and power (CCHP) system and electric vehicles (EVs) is explained in this thesis. The inclusion of the CCHP system helps to meet the energy demand and improve the mismatch of heat-to-electric ratio between the energy hub and the load. Additionally, vehicle-to-grid (V2G) technology is applied in this EH; that is, EVs are regarded not only as load demands but also as power suppliers. The energy hub optimization scheduling problem is formulated as a multi-period stochastic problem with the minimum total energy cost as the objective. Compared to 24-hour day-ahead scheduling, rolling horizon optimization is used in the EH scheduling and shows its superiority. In real-time rolling horizon scheduling, the optimization principle ensured that the result is optimized each moment, so it avoids energy waste caused by overbuying energy. As part of electricity loads, EVs have certain influence on energy hub scheduling. However, due to the randomness of the driving patterns, it is still very difficult to perfectly predict the driving consumption and the charging availability of the EVs one day in advance. Chance constrained programming can hedge the risk of uncertainty for a big probability and drop the extreme case with a very low probability. By restricting the probability of chance constraints over a specific level, the influence of the uncertainty of electric vehicle charging behavior on energy hub scheduling can be reduced. Simulation results show that the energy hub optimization scheduling with chance constrained programming results in a less energy cost and it can make better use of time-varying PV energy as well as the peak-to-valley electricity price

    District heating and cooling optimization and enhancement – towards integration of renewables, storage and smart grid

    Get PDF
    District heating and cooling (DHC) systems are attracting increased interest for their low carbon potential. However, most DHC systems are not operating at the expected performance level. Optimization and Enhancement of DHC networks to reduce (a) fossil fuel consumption, CO2 emission, and heat losses across the network, while (b) increasing return on investment, form key challenges faced by decision makers in the fast developing energy landscape. While the academic literature is abundant of research based on field experiments, simulations, optimization strategies and algorithms etc., there is a lack of a comprehensive review that addresses the multi-faceted dimensions of the optimization and enhancement of DHC systems with a view to promote integration of smart grids, energy storage and increased share of renewable energy. The paper focuses on four areas: energy generation, energy distribution, heat substations, and terminal users, identifying state-of-the-art methods and solutions, while paving the way for future research

    A Real-time Rolling Horizon Chance Constrained Optimization Model for Energy Hub Scheduling

    Get PDF
    With the increasing consumption of energy, it is of high significance to improve energy efficiency and realize optimal operation of the multi-energy system. Among the many energy system modeling methods, the concept of “energy hub (EH)” is an emerging one. However, the previous EH models only included one or a few of constituting components. The construction of an energy hub model that integrates energy storage systems, photovoltaic (PV) components, a combined cooling heating and power (CCHP) system and electric vehicles (EVs) is explained in this thesis. The inclusion of the CCHP system helps to meet the energy demand and improve the mismatch of heat-to-electric ratio between the energy hub and the load. Additionally, vehicle-to-grid (V2G) technology is applied in this EH; that is, EVs are regarded not only as load demands but also as power suppliers. The energy hub optimization scheduling problem is formulated as a multi-period stochastic problem with the minimum total energy cost as the objective. Compared to 24-hour day-ahead scheduling, rolling horizon optimization is used in the EH scheduling and shows its superiority. In real-time rolling horizon scheduling, the optimization principle ensured that the result is optimized each moment, so it avoids energy waste caused by overbuying energy. As part of electricity loads, EVs have certain influence on energy hub scheduling. However, due to the randomness of the driving patterns, it is still very difficult to perfectly predict the driving consumption and the charging availability of the EVs one day in advance. Chance constrained programming can hedge the risk of uncertainty for a big probability and drop the extreme case with a very low probability. By restricting the probability of chance constraints over a specific level, the influence of the uncertainty of electric vehicle charging behavior on energy hub scheduling can be reduced. Simulation results show that the energy hub optimization scheduling with chance constrained programming results in a less energy cost and it can make better use of time-varying PV energy as well as the peak-to-valley electricity price

    A Distributed Demand-Side Management Framework for the Smart Grid

    Get PDF
    This paper proposes a fully distributed Demand-Side Management system for Smart Grid infrastructures, especially tailored to reduce the peak demand of residential users. In particular, we use a dynamic pricing strategy, where energy tariffs are function of the overall power demand of customers. We consider two practical cases: (1) a fully distributed approach, where each appliance decides autonomously its own scheduling, and (2) a hybrid approach, where each user must schedule all his appliances. We analyze numerically these two approaches, showing that they are characterized practically by the same performance level in all the considered grid scenarios. We model the proposed system using a non-cooperative game theoretical approach, and demonstrate that our game is a generalized ordinal potential one under general conditions. Furthermore, we propose a simple yet effective best response strategy that is proved to converge in a few steps to a pure Nash Equilibrium, thus demonstrating the robustness of the power scheduling plan obtained without any central coordination of the operator or the customers. Numerical results, obtained using real load profiles and appliance models, show that the system-wide peak absorption achieved in a completely distributed fashion can be reduced up to 55%, thus decreasing the capital expenditure (CAPEX) necessary to meet the growing energy demand
    corecore