4,618 research outputs found

    Performance evaluation of WMN-GA for different mutation and crossover rates considering number of covered users parameter

    Get PDF
    Node placement problems have been long investigated in the optimization field due to numerous applications in location science and classification. Facility location problems are showing their usefulness to communication networks, and more especially from Wireless Mesh Networks (WMNs) field. Recently, such problems are showing their usefulness to communication networks, where facilities could be servers or routers offering connectivity services to clients. In this paper, we deal with the effect of mutation and crossover operators in GA for node placement problem. We evaluate the performance of the proposed system using different selection operators and different distributions of router nodes considering number of covered users parameter. The simulation results show that for Linear and Exponential ranking methods, the system has a good performance for all rates of crossover and mutation.Peer ReviewedPostprint (published version

    Effects of population size for location-aware node placement in WMNs: evaluation by a genetic algorithm--based approach

    Get PDF
    Wireless mesh networks (WMNs) are cost-efficient networks that have the potential to serve as an infrastructure for advanced location-based services. Location service is a desired feature for WMNs to support location-oriented applications. WMNs are also interesting infrastructures for supporting ubiquitous multimedia Internet access for mobile or fixed mesh clients. In order to efficiently support such services and offering QoS, the optimized placement of mesh router nodes is very important. Indeed, such optimized mesh placement can support location service managed in the mesh and keep the rate of location updates low...Peer ReviewedPostprint (author's final draft

    Node placement in Wireless Mesh Networks: a comparison study of WMN-SA and WMN-PSO simulation systems

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.With the fast development of wireless technologies, Wireless Mesh Networks (WMNs) are becoming an important networking infrastructure due to their low cost and increased high speed wireless Internet connectivity. In our previous work, we implemented a simulation system based on Simulated Annealing (SA) for solving node placement problem in wireless mesh networks, called WMN-SA. Also, we implemented a Particle Swarm Optimization (PSO) based simulation system, called WMN-PSO. In this paper, we compare two systems considering calculation time. From the simulation results, when the area size is 32 × 32 and 64 × 64, WMN-SA is better than WMN-PSO. When the area size is 128 × 128, WMN-SA performs better than WMN-PSO. However, WMN-SA needs more calculation time than WMN-PSO.Peer ReviewedPostprint (author's final draft

    Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks

    Get PDF
    With the fast development of wireless technologies, wireless mesh networks (WMNs) are becoming an important networking infrastructure due to their low cost and increased high speed wireless internet connectivity. This paper implements a simulation system based on particle swarm optimisation (PSO) in order to solve the problem of mesh router placement in WMNs. Four replacement methods of mesh routers are considered: constriction method (CM), random inertia weight method (RIWM), linearly decreasing Vmax method (LDVM) and linearly decreasing inertia weight method (LDIWM). Simulation results are provided, showing that the CM converges very fast, but has the worst performance among the methods. The considered performance metrics are the size of giant component (SGC) and the number of covered mesh clients (NCMC). The RIWM converges fast and the performance is good. The LDIWM is a combination of RIWM and LDVM. The LDVM converges after 170 number of phases but has a good performance.Peer ReviewedPostprint (author's final draft

    Telecommunications Network Planning and Maintenance

    Get PDF
    Telecommunications network operators are on a constant challenge to provide new services which require ubiquitous broadband access. In an attempt to do so, they are faced with many problems such as the network coverage or providing the guaranteed Quality of Service (QoS). Network planning is a multi-objective optimization problem which involves clustering the area of interest by minimizing a cost function which includes relevant parameters, such as installation cost, distance between user and base station, supported traffic, quality of received signal, etc. On the other hand, service assurance deals with the disorders that occur in hardware or software of the managed network. This paper presents a large number of multicriteria techniques that have been developed to deal with different kinds of problems regarding network planning and service assurance. The state of the art presented will help the reader to develop a broader understanding of the problems in the domain

    Investigation of fitness function weight-coefficients for optimization in WMN-PSO simulation system

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.With the fast development of wireless technologies, Wireless Mesh Networks (WMNs) are becoming an important networking infrastructure due to their low cost and increased high speed wireless Internet connectivity. In our previous work, we implemented a simulation system based on Particle Swam Optimization for solving node placement problem in wireless mesh networks, called WMN-PSO. In this paper, we use Size of Giant Component (SGC) and Number of Covered Mesh Clients (NCMC) as metrics for optimization. Then, we analyze effects of weight-coefficients for SGC and NCMC. From the simulation results, we found that the best values of the weight-coefficients for SGC and NCMC are 0.7 and 0.3, respectively.Peer ReviewedPostprint (author's final draft

    A simulated annealing algorithm for router nodes placement problem in Wireless Mesh Networks

    Get PDF
    Mesh router nodes placement is a central problem in Wireless Mesh Networks (WMNs). An efficient placement of mesh router nodes is indispensable for achieving network performance in terms of both network connectivity and user coverage. Unfortunately the problem is computationally hard to solve to optimality even for small deployment areas and a small number of mesh router nodes. As WMNs are becoming an important networking infrastructure for providing cost-efficient broadband wireless connectivity, researchers are paying attention to the resolution of the mesh router placement problem through heuristic approaches in order to achieve near optimal, yet high quality solutions in reasonable time. In this work we propose and evaluate a simulated annealing (SA) approach to placement of mesh router nodes in WMNs. The optimization model uses two maximization objectives, namely, the size of the giant component in the network and user coverage. Both objectives are important to deployment of WMNs; the former is crucial to achieve network connectivity while the later is an indicator of the QoS in WMNs. The SA approach distinguishes for its simplicity yet its policy of neighborhood exploration allows to reach promising areas of the solution space where quality solutions could be found. We have experimentally evaluated the SA algorithm through a benchmark of generated instances, varying from small to large size, and capturing different characteristics of WMNs such as topological placements of mesh clients. The experimental results showed the efficiency of the annealing approach for the placement of mesh router nodes in WMNs.Peer ReviewedPostprint (author's final draft
    corecore