1,721 research outputs found

    Pre-Processing of Point-Data from Contact and Optical 3D Digitization Sensors

    Get PDF
    Contemporary 3D digitization systems employed by reverse engineering (RE) feature ever-growing scanning speeds with the ability to generate large quantity of points in a unit of time. Although advantageous for the quality and efficiency of RE modelling, the huge number of point datas can turn into a serious practical problem, later on, when the CAD model is generated. In addition, 3D digitization processes are very often plagued by measuring errors, which can be attributed to the very nature of measuring systems, various characteristics of the digitized objects and subjective errors by the operator, which also contribute to problems in the CAD model generation process. This paper presents an integral system for the pre-processing of point data, i.e., filtering, smoothing and reduction, based on a cross-sectional RE approach. In the course of the proposed system development, major emphasis was placed on the module for point data reduction, which was designed according to a novel approach with integrated deviation analysis and fuzzy logic reasoning. The developed system was verified through its application on three case studies, on point data from objects of versatile geometries obtained by contact and laser 3D digitization systems. The obtained results demonstrate the effectiveness of the system

    A Modular Approach to Large-scale Design Optimization of Aerospace Systems.

    Full text link
    Gradient-based optimization and the adjoint method form a synergistic combination that enables the efficient solution of large-scale optimization problems. Though the gradient-based approach struggles with non-smooth or multi-modal problems, the capability to efficiently optimize up to tens of thousands of design variables provides a valuable design tool for exploring complex tradeoffs and finding unintuitive designs. However, the widespread adoption of gradient-based optimization is limited by the implementation challenges for computing derivatives efficiently and accurately, particularly in multidisciplinary and shape design problems. This thesis addresses these difficulties in two ways. First, to deal with the heterogeneity and integration challenges of multidisciplinary problems, this thesis presents a computational modeling framework that solves multidisciplinary systems and computes their derivatives in a semi-automated fashion. This framework is built upon a new mathematical formulation developed in this thesis that expresses any computational model as a system of algebraic equations and unifies all methods for computing derivatives using a single equation. The framework is applied to two engineering problems: the optimization of a nanosatellite with 7 disciplines and over 25,000 design variables; and simultaneous allocation and mission optimization for commercial aircraft involving 330 design variables, 12 of which are integer variables handled using the branch-and-bound method. In both cases, the framework makes large-scale optimization possible by reducing the implementation effort and code complexity. The second half of this thesis presents a differentiable parametrization of aircraft geometries and structures for high-fidelity shape optimization. Existing geometry parametrizations are not differentiable, or they are limited in the types of shape changes they allow. This is addressed by a novel parametrization that smoothly interpolates aircraft components, providing differentiability. An unstructured quadrilateral mesh generation algorithm is also developed to automate the creation of detailed meshes for aircraft structures, and a mesh convergence study is performed to verify that the quality of the mesh is maintained as it is refined. As a demonstration, high-fidelity aerostructural analysis is performed for two unconventional configurations with detailed structures included, and aerodynamic shape optimization is applied to the truss-braced wing, which finds and eliminates a shock in the region bounded by the struts and the wing.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111567/1/hwangjt_1.pd

    When one model is not enough: Combining epistemic tools in systems biology

    Get PDF
    In recent years, the philosophical focus of the modeling literature has shifted from descriptions of general properties of models to an interest in different model functions. It has been argued that the diversity of models and their correspondingly different epistemic goals are important for developing intelligible scientific theories (Levins, 2006; Leonelli, 2007). However, more knowledge is needed on how a combination of different epistemic means can generate and stabilize new entities in science. This paper will draw on Rheinberger’s practice-oriented account of knowledge production. The conceptual repertoire of Rheinberger’s historical epistemology offers important insights for an analysis of the modelling practice. I illustrate this with a case study on network modeling in systems biology where engineering approaches are applied to the study of biological systems. I shall argue that the use of multiple means of representations is an essential part of the dynamic of knowledge generation. It is because of – rather than in spite of – the diversity of constraints of different models that the interlocking use of different epistemic means creates a potential for knowledge production

    Automatic Mesh Repair and Optimization for Quality Mesh Generation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Development of a GIS-based method for sensor network deployment and coverage optimization

    Get PDF
    Au cours des dernières années, les réseaux de capteurs ont été de plus en plus utilisés dans différents contextes d’application allant de la surveillance de l’environnement au suivi des objets en mouvement, au développement des villes intelligentes et aux systèmes de transport intelligent, etc. Un réseau de capteurs est généralement constitué de nombreux dispositifs sans fil déployés dans une région d'intérêt. Une question fondamentale dans un réseau de capteurs est l'optimisation de sa couverture spatiale. La complexité de l'environnement de détection avec la présence de divers obstacles empêche la couverture optimale de plusieurs zones. Par conséquent, la position du capteur affecte la façon dont une région est couverte ainsi que le coût de construction du réseau. Pour un déploiement efficace d'un réseau de capteurs, plusieurs algorithmes d'optimisation ont été développés et appliqués au cours des dernières années. La plupart de ces algorithmes reposent souvent sur des modèles de capteurs et de réseaux simplifiés. En outre, ils ne considèrent pas certaines informations spatiales de l'environnement comme les modèles numériques de terrain, les infrastructures construites humaines et la présence de divers obstacles dans le processus d'optimisation. L'objectif global de cette thèse est d'améliorer les processus de déploiement des capteurs en intégrant des informations et des connaissances géospatiales dans les algorithmes d'optimisation. Pour ce faire, trois objectifs spécifiques sont définis. Tout d'abord, un cadre conceptuel est développé pour l'intégration de l'information contextuelle dans les processus de déploiement des réseaux de capteurs. Ensuite, sur la base du cadre proposé, un algorithme d'optimisation sensible au contexte local est développé. L'approche élargie est un algorithme local générique pour le déploiement du capteur qui a la capacité de prendre en considération de l'information spatiale, temporelle et thématique dans différents contextes d'applications. Ensuite, l'analyse de l'évaluation de la précision et de la propagation d'erreurs est effectuée afin de déterminer l'impact de l'exactitude des informations contextuelles sur la méthode d'optimisation du réseau de capteurs proposée. Dans cette thèse, l'information contextuelle a été intégrée aux méthodes d'optimisation locales pour le déploiement de réseaux de capteurs. L'algorithme développé est basé sur le diagramme de Voronoï pour la modélisation et la représentation de la structure géométrique des réseaux de capteurs. Dans l'approche proposée, les capteurs change leur emplacement en fonction des informations contextuelles locales (l'environnement physique, les informations de réseau et les caractéristiques des capteurs) visant à améliorer la couverture du réseau. La méthode proposée est implémentée dans MATLAB et est testée avec plusieurs jeux de données obtenus à partir des bases de données spatiales de la ville de Québec. Les résultats obtenus à partir de différentes études de cas montrent l'efficacité de notre approche.In recent years, sensor networks have been increasingly used for different applications ranging from environmental monitoring, tracking of moving objects, development of smart cities and smart transportation system, etc. A sensor network usually consists of numerous wireless devices deployed in a region of interest. A fundamental issue in a sensor network is the optimization of its spatial coverage. The complexity of the sensing environment with the presence of diverse obstacles results in several uncovered areas. Consequently, sensor placement affects how well a region is covered by sensors as well as the cost for constructing the network. For efficient deployment of a sensor network, several optimization algorithms are developed and applied in recent years. Most of these algorithms often rely on oversimplified sensor and network models. In addition, they do not consider spatial environmental information such as terrain models, human built infrastructures, and the presence of diverse obstacles in the optimization process. The global objective of this thesis is to improve sensor deployment processes by integrating geospatial information and knowledge in optimization algorithms. To achieve this objective three specific objectives are defined. First, a conceptual framework is developed for the integration of contextual information in sensor network deployment processes. Then, a local context-aware optimization algorithm is developed based on the proposed framework. The extended approach is a generic local algorithm for sensor deployment, which accepts spatial, temporal, and thematic contextual information in different situations. Next, an accuracy assessment and error propagation analysis is conducted to determine the impact of the accuracy of contextual information on the proposed sensor network optimization method. In this thesis, the contextual information has been integrated in to the local optimization methods for sensor network deployment. The extended algorithm is developed based on point Voronoi diagram in order to represent geometrical structure of sensor networks. In the proposed approach sensors change their location based on local contextual information (physical environment, network information and sensor characteristics) aiming to enhance the network coverage. The proposed method is implemented in MATLAB and tested with several data sets obtained from Quebec City spatial database. Obtained results from different case studies show the effectiveness of our approach

    Improving Tree Crown Mapping using Airborne LiDAR with Genetic Algorithms

    Get PDF
    Landscape-scale mapping of individual trees derived from LiDAR (Light Detection And Ranging) data have been found to be valuable for a wide range of environmental analyses including carbon inventories; fuel estimations for wildfire risk assessment and management. These mapping efforts use individual tree crown (ITC) recognition algorithms applied to LiDAR point clouds, which have complex parameter sets. Genetic algorithms (GA) have been demonstrated to be excellent function optimizers for very complex search spaces and perform well for parameter tuning. Here, we use GAs to identify the best of a set of published ITC models and their optimal parameters for airborne LiDAR of forested plots in the Sierra Nevada Mountains of California. We assessed the accuracy of these ITC models in terms of the F-score and percentage bias for tree crown prediction. GA-optimization generally improved on ITC default parameters and showed that these models typically perform better for detecting overstory trees

    Simulation-based Planning of Machine Vision Inspection Systems with an Application to Laser Triangulation

    Get PDF
    Nowadays, vision systems play a central role in industrial inspection. The experts typically choose the configuration of measurements in such systems empirically. For complex inspections, however, automatic inspection planning is essential. This book proposes a simulation-based approach towards inspection planning by contributing to all components of this problem: simulation, evaluation, and optimization. As an application, inspection of a complex cylinder head by laser triangulation is studied

    Layout optimization and Sustainable development of waste water networks with the use of heuristic algorithms: The Luxemburgish case

    Get PDF
    Fresh water tends to increasingly comprise a scarcity today both in arid or demographically boosted regions of the world such as large and smaller cities. On this basis, research is directed towards minimization of fresh water supply into a Waste Water Network Topology (WWNT) and maximizing water re-use. This might be composed of a cluster of agents which have certain demands for fresh water as well as waste water dependent on their daily uses and living profiles. This work is divided into two parts. In the first part, different waste water flows within a reference building unit i.e. a typical household of four (4) occupants is simulated. This type of building represents a major part of the total building stock in Luxembourg. In its first part the present study attempts to examine the optimized fresh and waste water flow pathways between water using units of the building. Between water flows two domestic treatment units are adopted. The simulation of above mentioned system is attempted by adopting different algorithm methods such as the Sequential Quadratic Programming (SQP), the interior point and meta-heuristic optimization algorithms such as the Genetic Algorithms (GA’s).Suitable computational platform tools such as MATLAB and GAMS are incorporated. A comparison study on the most efficient approach is then realized on the single household unit by developing four (4) different mathematical model formulation versions. The second part of this study comprises simulation and development of the Waste Water Network Grid (WWNG) in the upscale level, such as the neighborhood level within or outside the urban context. This model encompasses all possible land uses and different kinds of buildings of different use envelopes thus demands. This range of units includes mainly building stock, agricultural and infrastructure of the tertiary sector. Integration of above mentioned model to the existing WWNG will enhance attempts to more closely reach the optimum points. The use of appropriate mathematical programming methods for the upscale level, will take place. Increased uncertainties within the built model will be attempted to be tackled by developing linear programming techniques and suitable assumptions without distorting initial condition largely. Assumptions are then drawn on the efficiency of the adopted method an additional essential task is the minimization of the overall infrastructure and network cost, which may in turn give rise to corresponding reduced waste effluents discharge off the proposed network. The case study comprises selected rural and semi-rural areas zone districts of similar living profiles outside the City of Luxembourg. Therefore a clustering of end users of similar demand will be attempted. Possible redesign of an optimized WWNG comprises a vital need within the context of large scale demographic growth of urban environments today.Open Acces
    corecore