70 research outputs found

    Virtual Topology Reconfrigation of WDM Optical Network with Minimum Physical Node

    Get PDF
    This paper review the reconfiguration of high capacity WDM optical Network, messages are carried in all optical form using light paths. The set of semi-permanent light paths which are set up in the network may be viewed as a virtual topology by higher layers such as SONET, ATM and IP. Reconfiguration is to charge in virtual topology to meet traffic pattern in high layers. It provides a trade off between objective value and the no. of changes to the virtual topology. In another study Objective is to design the logical topology & routing Algorithm on physical topology, so as to minimize the net work congestion while constraining the average delay seen by source destination pair and the amount of processing required at the nodes. Failure handling in WDM Networks is of prime importance due to the nature and volume of traffic, these network carry, failure detection is usually achieved by exchanging control messages among nodes with time out mechanism. Newer and more BW thirsty applications emerging on the horizon and WDM is to leveraging the capabilities of the optical fiber Wavelength  routing  is  the  ability  to  switch  a  signal  at intermediate  nodes  in  a  WDM  network  based  on  their wavelength. Virtual topology can be reconfigured when necessary to improve performance. To create the virtual topology different from the physical topology of the underlying network, is the ability of wavelength routing WDM. Keywords: WDM, Physical Topology, Virtual Topology and Reconfiguratio

    Optical-drop wavelength assignment problem for wavelength reuse in WDM ring metropolitan area networks

    Get PDF
    This paper presents a formulation of the optical-drop wavelength assignment problem (ODWAP) and its heuristic algorithm for WDM ring networks. The wavelength-division multiplexing (WDM) technology has been popular in communication societies for providing very large communication bands by multiple lightpaths with different wavelengths on a single optical fiber. Particularly, a double-ring optical network architecture based on the packet-over-WDM technology such as the HORNET architecture has been studied as a next generation platform for metropolitan area networks (MANs). Each node in this architecture is equipped with a wavelength-fixed optical-drop and a tunable transmitter so that a lightpath can be established between any pair of nodes without wavelength conversions. In this paper, we formulate ODWAP for efficient wavelength reuse under heterogeneous traffic in this network. Then, we propose a simple heuristic algorithm for ODWAP. Through extensive simulations, we demonstrate the effectiveness of our approach in reducing waiting times for packet transmissions when a small number of wavelengths are available to retain the network cost for MANs

    A Survey of the Routing and Wavelength Assignment Problem

    Get PDF
    corecore