5,993 research outputs found

    Designing a manufacturing cell system by assigning workforce

    Get PDF
    Purpose: In this paper, we have proposed a new model for designing a Cellular Manufacturing System (CMS) for minimizing the costs regarding a limited number of cells to be formed by assigning workforce. Design/methodology/approach: Pursuing mathematical approach and because the problem is NP-Hard, two meta-heuristic methods of Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms have been used. A small randomly generated test problem with real-world dimensions has been solved using simulated annealing and particle swarm algorithms. Findings: The quality of the two algorithms has been compared. The results showed that PSO algorithm provides more satisfactory solutions than SA algorithm in designing a CMS under uncertainty demands regarding the workforce allocation. Originality/value: In the most of the previous research, cell production has been considered under certainty production or demand conditions, while in practice production and demand are in a dynamic situations and in the real settings, cell production problems require variables and active constraints for each different time periods to achieve better design, so modeling such a problem in dynamic structure leads to more complexity while getting more applicability. The contribution of this paper is providing a new model by considering dynamic production times and uncertainty demands in designing cells.Peer Reviewe

    Cell Production System Design: A Literature Review

    Get PDF
    Purpose In a cell production system, a number of machines that differ in function are housed in the same cell. The task of these cells is to complete operations on similar parts that are in the same group. Determining the family of machine parts and cells is one of the major design problems of production cells. Cell production system design methods include clustering, graph theory, artificial intelligence, meta-heuristic, simulation, mathematical programming. This article discusses the operation of methods and research in the field of cell production system design. Methodology: To examine these methods, from 187 articles published in this field by authoritative scientific sources, based on the year of publication and the number of restrictions considered and close to reality, which are searched using the keywords of these restrictions and among them articles Various aspects of production and design problems, such as considering machine costs and cell size and process routing, have been selected simultaneously. Findings: Finally, the distribution diagram of the use of these methods and the limitations considered by their researchers, shows the use and efficiency of each of these methods. By examining them, more efficient and efficient design fields of this type of production system can be identified. Originality/Value: In this article, the literature on cell production system from 1972 to 2021 has been reviewed

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Enhancing Facility Layout via Ant Colony Technique (Act)

    Get PDF
    Cellular manufacturing systems optimization is investigated and manipulated using artificial intelligent (AI) approach combining facility layout and group technology scope. This research applied the ANT COLONY technique  (ACT) optimization where this process was inspired by the real ants and how they move and build colonies by avoiding obstacle and simulate the process to get a procedure that can be adopted on this optimization process. In this research the problem goes in two way first the theory that take account the positions of machines inside the plant and its equations of controlling and second is the routing of part during product life cycle then execute results and applying it on factory configuration. The application of Ants system was carried out on industrial factory of electrical motor where all data was taken from the factory depending on the position and sequence of operations took place. Results were carried out in a way that depending on the showing site plan configurations for each stage and studying the iteration curve response to the parameters changes while testing the system during different environments. The results show high flexibility in ACS (Ant colony system) with fast response and high reduction in the distance crossed by the product part that reached 500m. The ratio of the reduction is 0.625. Keyword: Artificial intelligent (AI), Ant colony (AC), pheromone, genetic algorithm, facility layout, cell manufacturing (CM)

    a hybrid metaheuristic approach for minimizing the total flow time in a flow shop sequence dependent group scheduling problem

    Get PDF
    Production processes in Cellular Manufacturing Systems (CMS) often involve groups of parts sharing the same technological requirements in terms of tooling and setup. The issue of scheduling such parts through a flow-shop production layout is known as the Flow-Shop Group Scheduling (FSGS) problem or, whether setup times are sequence-dependent, the Flow-Shop Sequence-Dependent Group Scheduling (FSDGS) problem. This paper addresses the FSDGS issue, proposing a hybrid metaheuristic procedure integrating features from Genetic Algorithms (GAs) and Biased Random Sampling (BRS) search techniques with the aim of minimizing the total flow time, i.e., the sum of completion times of all jobs. A well-known benchmark of test cases, entailing problems with two, three, and six machines, is employed for both tuning the relevant parameters of the developed procedure and assessing its performances against two metaheuristic algorithms recently presented by literature. The obtained results and a properly arranged ANOVA analysis highlight the superiority of the proposed approach in tackling the scheduling problem under investigation

    A new approach for cell formation and scheduling with assembly operations and product structure

    Get PDF
    In this paper, a new formulation model for cellular manufacturing system (CMS) design problem is proposed. The proposed model of this paper considers assembly operations and product structure so that it includes the scheduling problem with the formation of manufacturing cells, simultaneously. Since the proposed model is nonlinear, a linearization method is applied to gain optimal solution when the model is solved using direct implementation of mixed integer programming. A new genetic algorithm (GA) is also proposed to solve the resulted model for large-scale problems. We examine the performance of the proposed method using the direct implementation and the proposed GA method. The results indicate that the proposed GA approach could provide efficient assembly and product structure for real-world size problems

    Facility Layout Planning and Job Shop Scheduling – A survey

    Get PDF

    Human cognition inspired procedures for part family formation based on novel Inspection Based Clustering approach

    Get PDF
    Human cognition based procedures are promising approaches for solving different kind or problems, and this paper addresses the part family formation problem inspired by a human cognition procedure through a graph-based approach, drawing on pattern recognition. There are many algorithms which consider nature inspired models for solving a broad range of problem types. However, there is a noticeable existence of a gap in implementing models based on human cognition, which are generally characterized by “visual thinking”, rather than complex mathematical models. Hence, the natural power of reasoning - by detecting the patterns that mimic the natural human cognition - is used in this study as this paper is based on the partial implementation of graph theory in modelling and solving issues related to the grouping of the parts to be processed by one machine, regardless of their size. The obtained results have shown that most of the problems solved by using the proposed approach have provided interesting benchmark results when compared with previous results given by GRASP (Greedy Randomized Adaptive Search Procedure) heuristics.This work has been supported by national funds through FCT - Fundacao para a Ciencia e Tecnologia - under the [UID/CEC/00319/2019] project, and under the RD Units Projects Scopes: UIDP/04077/2020 and UIDB/04077/2020, UIDP/04077/2020 and UIDB/04077/2020

    Optimisasi Pembentukan Sel Diintegrasikan dengan Penempatan Mesin dan Penjadwalan di dalam Selular Manufaktur Menggunakan Algoritma Genetika

    Full text link
    Perindustrian di Indonesia belakangan ini semakin berkembang, hal ini mengantarkannya pada persaingan global, sehingga mendorong banyak Perusahaan untuk semakin memperbaiki dan meningkatkan USAhanya agar lebih efektif dan efisien. Salah satu yang berdampak signifikan pada keefektifan dan keefesianan suatu Perusahaan adalah perencanaan fasilitas. Cellular Manufacturing (CM) adalah salah satu metode yang telah terbukti mampu menambah efisiensi serta fleksibilitas dalam lingkungan produksi manufaktur. Diantara faktor-faktor yang diperlukan dalam selular manufaktur adalah Cell Formation (CF), Group Layout (GL), dan Group Scheduling (GS). Biasanya, tiga faktor ini diselesaikan dalam keadaan terpisah atau diselesaikan secara berurutan. Tugas ahir ini membahas tentang metode untuk penyelesaian CF, GL, GS secara bersamaan. A hierarchical genetic algorithm (HGA) digunakan untuk menyelesaikan permasalahan tersebut

    Algorithms and Methods for Designing and Scheduling Smart Manufacturing Systems

    Get PDF
    This book, as a Special Issue, is a collection of some of the latest advancements in designing and scheduling smart manufacturing systems. The smart manufacturing concept is undoubtedly considered a paradigm shift in manufacturing technology. This conception is part of the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and opportunities for the companies that are facing tough global competition. Industry 4.0 should not only be perceived as one of many possible strategies for manufacturing companies, but also as an important practice within organizations. The main focus of Industry 4.0 implementation is to combine production, information technology, and the internet. The presented Special Issue consists of ten research papers presenting the latest works in the field. The papers include various topics, which can be divided into three categories—(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process optimization (two articles), (iii) digital insurance platforms (one article). Most of the mentioned research problems are solved in these articles by using genetic algorithms, the harmony search algorithm, the hybrid bat algorithm, the combined whale optimization algorithm, and other optimization and decision-making methods. The above-mentioned groups of articles are briefly described in this order in this book
    • …
    corecore