7,798 research outputs found

    Supporting Data mining of large databases by visual feedback queries

    Get PDF
    In this paper, we describe a query system that provides visual relevance feedback in querying large databases. Our goal is to support the process of data mining by representing as many data items as possible on the display. By arranging and coloring the data items as pixels according to their relevance for the query, the user gets a visual impression of the resulting data set. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. Furthermore, by using multiple windows for different parts of a complex query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. Our system allows to represent the largest amount of data that can be visualized on current display technology, provides valuable feedback in querying the database, and allows the user to find results which, otherwise, would remain hidden in the database

    Ptolemaic Indexing

    Full text link
    This paper discusses a new family of bounds for use in similarity search, related to those used in metric indexing, but based on Ptolemy's inequality, rather than the metric axioms. Ptolemy's inequality holds for the well-known Euclidean distance, but is also shown here to hold for quadratic form metrics in general, with Mahalanobis distance as an important special case. The inequality is examined empirically on both synthetic and real-world data sets and is also found to hold approximately, with a very low degree of error, for important distances such as the angular pseudometric and several Lp norms. Indexing experiments demonstrate a highly increased filtering power compared to existing, triangular methods. It is also shown that combining the Ptolemaic and triangular filtering can lead to better results than using either approach on its own

    Approximated and User Steerable tSNE for Progressive Visual Analytics

    Full text link
    Progressive Visual Analytics aims at improving the interactivity in existing analytics techniques by means of visualization as well as interaction with intermediate results. One key method for data analysis is dimensionality reduction, for example, to produce 2D embeddings that can be visualized and analyzed efficiently. t-Distributed Stochastic Neighbor Embedding (tSNE) is a well-suited technique for the visualization of several high-dimensional data. tSNE can create meaningful intermediate results but suffers from a slow initialization that constrains its application in Progressive Visual Analytics. We introduce a controllable tSNE approximation (A-tSNE), which trades off speed and accuracy, to enable interactive data exploration. We offer real-time visualization techniques, including a density-based solution and a Magic Lens to inspect the degree of approximation. With this feedback, the user can decide on local refinements and steer the approximation level during the analysis. We demonstrate our technique with several datasets, in a real-world research scenario and for the real-time analysis of high-dimensional streams to illustrate its effectiveness for interactive data analysis
    • …
    corecore