3,953 research outputs found

    Automatic Finding Trapezoidal Membership Functions in Mining Fuzzy Association Rules Based on Learning Automata

    Get PDF
    Association rule mining is an important data mining technique used for discovering relationships among all data items. Membership functions have a significant impact on the outcome of the mining association rules. An important challenge in fuzzy association rule mining is finding an appropriate membership functions, which is an optimization issue. In the most relevant studies of fuzzy association rule mining, only triangle membership functions are considered. This study, as the first attempt, used a team of continuous action-set learning automata (CALA) to find both the appropriate number and positions of trapezoidal membership functions (TMFs). The spreads and centers of the TMFs were taken into account as parameters for the research space and a new approach for the establishment of a CALA team to optimize these parameters was introduced. Additionally, to increase the convergence speed of the proposed approach and remove bad shapes of membership functions, a new heuristic approach has been proposed. Experiments on two real data sets showed that the proposed algorithm improves the efficiency of the extracted rules by finding optimized membership functions

    Encapsulation of Soft Computing Approaches within Itemset Mining a A Survey

    Get PDF
    Data Mining discovers patterns and trends by extracting knowledge from large databases. Soft Computing techniques such as fuzzy logic, neural networks, genetic algorithms, rough sets, etc. aims to reveal the tolerance for imprecision and uncertainty for achieving tractability, robustness and low-cost solutions. Fuzzy Logic and Rough sets are suitable for handling different types of uncertainty. Neural networks provide good learning and generalization. Genetic algorithms provide efficient search algorithms for selecting a model, from mixed media data. Data mining refers to information extraction while soft computing is used for information processing. For effective knowledge discovery from large databases, both Soft Computing and Data Mining can be merged. Association rule mining (ARM) and Itemset mining focus on finding most frequent item sets and corresponding association rules, extracting rare itemsets including temporal and fuzzy concepts in discovered patterns. This survey paper explores the usage of soft computing approaches in itemset utility mining

    Business Intelligence from Web Usage Mining

    Full text link
    The rapid e-commerce growth has made both business community and customers face a new situation. Due to intense competition on one hand and the customer's option to choose from several alternatives business community has realized the necessity of intelligent marketing strategies and relationship management. Web usage mining attempts to discover useful knowledge from the secondary data obtained from the interactions of the users with the Web. Web usage mining has become very critical for effective Web site management, creating adaptive Web sites, business and support services, personalization, network traffic flow analysis and so on. In this paper, we present the important concepts of Web usage mining and its various practical applications. We further present a novel approach 'intelligent-miner' (i-Miner) to optimize the concurrent architecture of a fuzzy clustering algorithm (to discover web data clusters) and a fuzzy inference system to analyze the Web site visitor trends. A hybrid evolutionary fuzzy clustering algorithm is proposed in this paper to optimally segregate similar user interests. The clustered data is then used to analyze the trends using a Takagi-Sugeno fuzzy inference system learned using a combination of evolutionary algorithm and neural network learning. Proposed approach is compared with self-organizing maps (to discover patterns) and several function approximation techniques like neural networks, linear genetic programming and Takagi-Sugeno fuzzy inference system (to analyze the clusters). The results are graphically illustrated and the practical significance is discussed in detail. Empirical results clearly show that the proposed Web usage-mining framework is efficient

    Multiobjective Evolutionary Induction of Subgroup Discovery Fuzzy Rules: A Case Study in Marketing

    Get PDF
    This paper presents a multiobjective genetic algorithm which obtains fuzzy rules for subgroup discovery in disjunctive normal form. This kind of fuzzy rules lets us represent knowledge about patterns of interest in an explanatory and understandable form which can be used by the expert. The evolutionary algorithm follows a multiobjective approach in order to optimize in a suitable way the different quality measures used in this kind of problems. Experimental evaluation of the algorithm, applying it to a market problem studied in the University of Mondragón (Spain), shows the validity of the proposal. The application of the proposal to this problem allows us to obtain novel and valuable knowledge for the experts.Spanish Ministry of Science and TechnologyFEDER TIC-2005-08386-C05-01 and TIC-2005- 08386-C05-03TIN2004-20061-E and TIN2004-21343-

    A Genetic Tuning to Improve the Performance of Fuzzy Rule-Based Classification Systems with Interval-Valued Fuzzy Sets: Degree of Ignorance and Lateral Position

    Get PDF
    Fuzzy Rule-Based Systems are appropriate tools to deal with classification problems due to their good properties. However, they can suffer a lack of system accuracy as a result of the uncertainty inherent in the definition of the membership functions and the limitation of the homogeneous distribution of the linguistic labels. The aim of the paper is to improve the performance of Fuzzy Rule-Based Classification Systems by means of the Theory of Interval-Valued Fuzzy Sets and a post-processing genetic tuning step. In order to build the Interval-Valued Fuzzy Sets we define a new function called weak ignorance for modeling the uncertainty associated with the definition of the membership functions. Next, we adapt the fuzzy partitions to the problem in an optimal way through a cooperative evolutionary tuning in which we handle both the degree of ignorance and the lateral position (based on the 2-tuples fuzzy linguistic representation) of the linguistic labels. The experimental study is carried out over a large collection of data-sets and it is supported by a statistical analysis. Our results show empirically that the use of our methodology outperforms the initial Fuzzy Rule-Based Classification System. The application of our cooperative tuning enhances the results provided by the use of the isolated tuning approaches and also improves the behavior of the genetic tuning based on the 3-tuples fuzzy linguistic representation.Spanish Government TIN2008-06681-C06-01 TIN2010-1505

    A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data

    Get PDF
    The current financial crisis has stressed the need to obtain more accurate prediction models in order to decrease risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle real-world imbalanced financial datasets without using sampling techniques that might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on interval-valued fuzzy rule-based classification system with tuning and rule selection (IVTURS FA RC-HD ) for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good prediction accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and, thus, avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including 11 real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1, and interval-valued fuzzy counterparts that use the synthetic minority oversampling technique (SMOTE) to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost-sensitive C4.5, and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids preprocessing techniques, and it provides interpretable models that allow obtaining more accurate results
    corecore