910 research outputs found

    Frequency planning for clustered jointly processed cellular multiple access channel

    Get PDF
    Owing to limited resources, it is hard to guarantee minimum service levels to all users in conventional cellular systems. Although global cooperation of access points (APs) is considered promising, practical means of enhancing efficiency of cellular systems is by considering distributed or clustered jointly processed APs. The authors present a novel `quality of service (QoS) balancing scheme' to maximise sum rate as well as achieve cell-based fairness for clustered jointly processed cellular multiple access channel (referred to as CC-CMAC). Closed-form cell level QoS balancing function is derived. Maximisation of this function is proved as an NP hard problem. Hence, using power-frequency granularity, a modified genetic algorithm (GA) is proposed. For inter site distance (ISD) <; 500 m, results show that with no fairness considered, the upper bound of the capacity region is achievable. Applying hard fairness restraints on users transmitting in moderately dense AP system, 20% reduction in sum rate contribution increases fairness by upto 10%. The flexible QoS can be applied on a GA-based centralised dynamic frequency planner architecture

    Genetic algorithms with niching

    Get PDF

    A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm

    Full text link
    K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately, due to its gradient descent nature, this algorithm is highly sensitive to the initial placement of the cluster centers. Numerous initialization methods have been proposed to address this problem. In this paper, we first present an overview of these methods with an emphasis on their computational efficiency. We then compare eight commonly used linear time complexity initialization methods on a large and diverse collection of data sets using various performance criteria. Finally, we analyze the experimental results using non-parametric statistical tests and provide recommendations for practitioners. We demonstrate that popular initialization methods often perform poorly and that there are in fact strong alternatives to these methods.Comment: 17 pages, 1 figure, 7 table

    Designs of Digital Filters and Neural Networks using Firefly Algorithm

    Get PDF
    Firefly algorithm is an evolutionary algorithm that can be used to solve complex multi-parameter problems in less time. The algorithm was applied to design digital filters of different orders as well as to determine the parameters of complex neural network designs. Digital filters have several applications in the fields of control systems, aerospace, telecommunication, medical equipment and applications, digital appliances, audio recognition processes etc. An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, processes information and can be simulated using a computer to perform certain specific tasks like clustering, classification, and pattern recognition etc. The results of the designs using Firefly algorithm was compared to the state of the art algorithms and found that the digital filter designs produce results close to the Parks McClellan method which shows the algorithm’s capability of handling complex problems. Also, for the neural network designs, Firefly algorithm was able to efficiently optimize a number of parameter values. The performance of the algorithm was tested by introducing various input noise levels to the training inputs of the neural network designs and it produced the desired output with negligible error in a time-efficient manner. Overall, Firefly algorithm was found to be competitive in solving the complex design optimization problems like other popular optimization algorithms such as Differential Evolution, Particle Swarm Optimization and Genetic Algorithm. It provides a number of adjustable parameters which can be tuned according to the specified problem so that it can be applied to a number of optimization problems and is capable of producing quality results in a reasonable amount of time

    Large-Scale Evolutionary Optimization Using Multi-Layer Strategy Differential Evolution

    Get PDF
    Differential evolution (DE) has been extensively used in optimization studies since its development in 1995 because of its reputation as an effective global optimizer. DE is a population-based meta-heuristic technique that develops numerical vectors to solve optimization problems. DE strategies have a significant impact on DE performance and play a vital role in achieving stochastic global optimization. However, DE is highly dependent on the control parameters involved. In practice, the fine-tuning of these parameters is not always easy. Here, we discuss the improvements and developments that have been made to DE algorithms. The Multi-Layer Strategies Differential Evolution (MLSDE) algorithm, which finds optimal solutions for large scale problems. To solve large scale problems were grouped different strategies together and applied them to date set. Furthermore, these strategies were applied to selected vectors to strengthen the exploration ability of the algorithm. Extensive computational analysis was also carried out to evaluate the performance of the proposed algorithm on a set of well-known CEC 2015 benchmark functions. This benchmark was utilized for the assessment and performance evaluation of the proposed algorithm

    Quantization-based Optimization with Perspective of Quantum Mechanics

    Full text link
    Statistical and stochastic analysis based on thermodynamics has been the main analysis framework for stochastic global optimization. Recently, appearing quantum annealing or quantum tunneling algorithm for global optimization, we require a new researching framework for global optimization algorithms. In this paper, we provide the analysis for quantization-based optimization based on the Schr\"odinger equation to reveal what property in quantum mechanics enables global optimization. We present that the tunneling effect derived by the Schr\"odinger equation in quantization-based optimization enables to escape of a local minimum. Additionally, we confirm that this tunneling effect is the same property included in quantum mechanics-based global optimization. Experiments with standard multi-modal benchmark functions represent that the proposed analysis is valid.Comment: Preprint for ICTC conferenc

    An improved real hybrid genetic algorithm

    Get PDF
    Želeći riješiti problem prerane konvergencije genetskog algoritma i algoritma roja čestica, kako bi se omogućilo da te dvije metode konvergiraju ka globalnom optimalnom rješenju uz najveću vjerojatnoću te da se poboljša učinkovitost algoritma, u članku će se kombinirati poboljšani genetski algoritam s metodom poboljšane optimalizacije roja čestica da bi se sastavio miješani poboljšani algoritam. Uz različite referentne funkcije upotrjebljene za testiranje funkcioniranja stvarno hibridnog genetskog algoritma, rezultati pokazuju da hibridni algoritam ima dobru globalnu sposobnost pretraživanja, brzu konvergenciju, dobru kvalitetu rješenja i dobru performansu rezultata optimalizacije.Aiming at the problem of premature convergence of genetic algorithm and particle swarm algorithm, in order to let the two methods converge to the global optimal solution with the greatest probability and improve the efficiency of the algorithm, the paper will combine improved genetic algorithm with improved particle swarm optimization method to constitute mixed improved algorithm. Through multiple benchmark function used to test the performance of real hybrid genetic algorithm, the results show that hybrid algorithm has good global search ability, fast convergence, good quality of the solution, and good robust performance of its optimization results

    Enhancing Speech Recognition Using Improved Particle Swarm Optimization Based Hidden Markov Model

    Get PDF
    Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO) is suggested. The suggested methodology contains four stages, namely, (i) denoising, (ii) feature mining (iii), vector quantization, and (iv) IPSO based hidden Markov model (HMM) technique (IP-HMM). At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC), mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy

    Frequency planning for clustered jointly processed cellular multiple access channel

    Get PDF
    Owing to limited resources, it is hard to guarantee minimum service levels to all users in conventional cellular systems. Although global cooperation of access points (APs) is considered promising, practical means of enhancing efficiency of cellular systems is by considering distributed or clustered jointly processed APs. The authors present a novel `quality of service (QoS) balancing scheme' to maximise sum rate as well as achieve cell-based fairness for clustered jointly processed cellular multiple access channel (referred to as CC-CMAC). Closed-form cell level QoS balancing function is derived. Maximisation of this function is proved as an NP hard problem. Hence, using power-frequency granularity, a modified genetic algorithm (GA) is proposed. For inter site distance (ISD) <; 500 m, results show that with no fairness considered, the upper bound of the capacity region is achievable. Applying hard fairness restraints on users transmitting in moderately dense AP system, 20% reduction in sum rate contribution increases fairness by upto 10%. The flexible QoS can be applied on a GA-based centralised dynamic frequency planner architecture
    corecore