421 research outputs found

    Evolutionary Algorithms with Linkage Information for Feature Selection in Brain Computer Interfaces

    Get PDF
    Abstract Brain Computer Interfaces are an essential technology for the advancement of prosthetic limbs, but current signal acquisition methods are hindered by a number of factors, not least, noise. In this context, Feature Selection is required to choose the important signal features and improve classifier accuracy. Evolutionary algorithms have proven to outperform filtering methods (in terms of accuracy) for Feature Selection. This paper applies a single-point heuristic search method, Iterated Local Search (ILS), and compares it to a genetic algorithm (GA) and a memetic algorithm (MA). It then further attempts to utilise Linkage between features to guide search operators in the algorithms stated. The GA was found to outperform ILS. Counter-intuitively, linkage-guided algorithms resulted in higher classification error rates than their unguided alternatives. Explanations for this are explored

    Mutual Information Iterated Local Search: A Wrapper-Filter Hybrid for Feature Selection in Brain Computer Interfaces

    Get PDF
    Brain Computer Interfaces provide a very challenging classification task due to small numbers of instances, large numbers of features, non-stationary problems, and low signal-to-noise ratios. Feature selection (FS) is a promising solution to help mitigate these effects. Wrapper FS methods are typically found to outperform filter FS methods, but reliance on cross-validation accuracies can be misleading due to overfitting. This paper proposes a filter-wrapper hybrid based on Iterated Local Search and Mutual Information, and shows that it can provide more reliable solutions, where the solutions are more able to generalise to unseen data. This study further contributes comparisons over multiple datasets, something that has been uncommon in the literature

    Improving the Generalisability of Brain Computer Interface Applications via Machine Learning and Search-Based Heuristics

    Get PDF
    Brain Computer Interfaces (BCI) are a domain of hardware/software in which a user can interact with a machine without the need for motor activity, communicating instead via signals generated by the nervous system. These interfaces provide life-altering benefits to users, and refinement will both allow their application to a much wider variety of disabilities, and increase their practicality. The primary method of acquiring these signals is Electroencephalography (EEG). This technique is susceptible to a variety of different sources of noise, which compounds the inherent problems in BCI training data: large dimensionality, low numbers of samples, and non-stationarity between users and recording sessions. Feature Selection and Transfer Learning have been used to overcome these problems, but they fail to account for several characteristics of BCI. This thesis extends both of these approaches by the use of Search-based algorithms. Feature Selection techniques, known as Wrappers use ‘black box’ evaluation of feature subsets, leading to higher classification accuracies than ranking methods known as Filters. However, Wrappers are more computationally expensive, and are prone to over-fitting to training data. In this thesis, we applied Iterated Local Search (ILS) to the BCI field for the first time in literature, and demonstrated competitive results with state-of-the-art methods such as Least Absolute Shrinkage and Selection Operator and Genetic Algorithms. We then developed ILS variants with guided perturbation operators. Linkage was used to develop a multivariate metric, Intrasolution Linkage. This takes into account pair-wise dependencies of features with the label, in the context of the solution. Intrasolution Linkage was then integrated into two ILS variants. The Intrasolution Linkage Score was discovered to have a stronger correlation with the solutions predictive accuracy on unseen data than Cross Validation Error (CVE) on the training set, the typical approach to feature subset evaluation. Mutual Information was used to create Minimum Redundancy Maximum Relevance Iterated Local Search (MRMR-ILS). In this algorithm, the perturbation operator was guided using an existing Mutual Information measure, and compared with current Filter and Wrapper methods. It was found to achieve generally lower CVE rates and higher predictive accuracy on unseen data than existing algorithms. It was also noted that solutions found by the MRMR-ILS provided CVE rates that had a stronger correlation with the accuracy on unseen data than solutions found by other algorithms. We suggest that this may be due to the guided perturbation leading to solutions that are richer in Mutual Information. Feature Selection reduces computational demands and can increase the accuracy of our desired models, as evidenced in this thesis. However, limited quantities of training samples restricts these models, and greatly reduces their generalisability. For this reason, utilisation of data from a wide range of users is an ideal solution. Due to the differences in neural structures between users, creating adequate models is difficult. We adopted an existing state-of-the-art ensemble technique Ensemble Learning Generic Information (ELGI), and developed an initial optimisation phase. This involved using search to transplant instances between user subsets to increase the generalisability of each subset, before combination in the ELGI. We termed this Evolved Ensemble Learning Generic Information (eELGI). The eELGI achieved higher accuracy than user-specific BCI models, across all eight users. Optimisation of the training dataset allowed smaller training sets to be used, offered protection against neural drift, and created models that performed similarly across participants, regardless of neural impairment. Through the introduction and hybridisation of search based algorithms to several problems in BCI we have been able to show improvements in modelling accuracy and efficiency. Ultimately, this represents a step towards more practical BCI systems that will provide life altering benefits to users

    A new multi-objective wrapper method for feature selection – Accuracy and stability analysis for BCI

    Get PDF
    Feature selection is an important step in building classifiers for high-dimensional data problems, such as EEG classification for BCI applications. This paper proposes a new wrapper method for feature selection, based on a multi-objective evolutionary algorithm, where the representation of the individuals or potential solutions, along with the breeding operators and objective functions, have been carefully designed to select a small subset of features that has good generalization capability, trying to avoid the over-fitting problems that wrapper methods usually suffer. A novel feature ranking procedure is also proposed in order to analyze the stability of the proposed wrapper method. Four different classification schemes have been applied within the proposed wrapper method in order to evaluate its accuracy and stability for feature selection on a real motor imagery dataset. Experimental results show that the wrapper method presented in this paper is able to obtain very small subsets of features, which are quite stable and also achieve high classification accuracy, regardless of the classifiers used.Project TIN2015-67020-P (Spanish “Ministerio de Economía y Competitividad”)European Regional Development Funds (ERDF

    An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System

    Get PDF
    Background. Due to the redundant information contained in multichannel electroencephalogram (EEG) signals, the classification accuracy of brain-computer interface (BCI) systems may deteriorate to a large extent. Channel selection methods can help to remove task-independent electroencephalogram (EEG) signals and hence improve the performance of BCI systems. However, in different frequency bands, brain areas associated with motor imagery are not exactly the same, which will result in the inability of traditional channel selection methods to extract effective EEG features. New Method. To address the above problem, this paper proposes a novel method based on common spatial pattern- (CSP-) rank channel selection for multifrequency band EEG (CSP-R-MF). It combines the multiband signal decomposition filtering and the CSP-rank channel selection methods to select significant channels, and then linear discriminant analysis (LDA) was used to calculate the classification accuracy. Results. The results showed that our proposed CSP-R-MF method could significantly improve the average classification accuracy compared with the CSP-rank channel selection method

    Development of a Practical Visual-Evoked Potential-Based Brain-Computer Interface

    Get PDF
    There are many different neuromuscular disorders that disrupt the normal communication pathways between the brain and the rest of the body. These diseases often leave patients in a `locked-in state, rendering them unable to communicate with their environment despite having cognitively normal brain function. Brain-computer interfaces (BCIs) are augmentative communication devices that establish a direct link between the brain and a computer. Visual evoked potential (VEP)- based BCIs, which are dependent upon the use of salient visual stimuli, are amongst the fastest BCIs available and provide the highest communication rates compared to other BCI modalities. However. the majority of research focuses solely on improving the raw BCI performance; thus, most visual BCIs still suffer from a myriad of practical issues that make them impractical for everyday use. The focus of this dissertation is on the development of novel advancements and solutions that increase the practicality of VEP-based BCIs. The presented work shows the results of several studies that relate to characterizing and optimizing visual stimuli. improving ergonomic design. reducing visual irritation, and implementing a practical VEP-based BCI using an extensible software framework and mobile devices platforms

    Pac-Man Conquers Academia: Two Decades of Research Using a Classic Arcade Game

    Get PDF

    Biology Laboratories at a Distance: A Case Study and Experiment of Ecology and Evolution Labs with Community College Students

    Get PDF
    Community colleges deliver more courses online; laboratory-based courses face challenges in how to do this. This study examined how ecology and evolution laboratories could effectively be delivered in an online biology community college course. Virtual simulations and hands-on, at-home kits were used in two groups. Results showed that students using the virtual simulations had higher learning gains and more positive perceptions towards their laboratory experiences than those students using athome kits. By evaluating learning gains on a pretest/posttest and utilizing interviews and focus groups, this research concluded that virtual simulations offered a superior learning experience for online learners. The results suggest that laboratory experiences offered students important advantages: course engagement, opportunities to think about the processes of science, and opportunities to engage with difficult or abstract content. Students expected laboratories to be streamlined. The results of this research suggest that instructors and administrators at community colleges critically examine the use of virtual simulations for abstract or difficult content as virtual simulations provided opportunities for greater student success than traditional, hands-on labs when delivered online. Virtual simulations provide viable alternatives to traditional laboratories for online students
    corecore