262 research outputs found

    An M-QAM Signal Modulation Recognition Algorithm in AWGN Channel

    Full text link
    Computing the distinct features from input data, before the classification, is a part of complexity to the methods of Automatic Modulation Classification (AMC) which deals with modulation classification was a pattern recognition problem. Although the algorithms that focus on MultiLevel Quadrature Amplitude Modulation (M-QAM) which underneath different channel scenarios was well detailed. A search of the literature revealed indicates that few studies were done on the classification of high order M-QAM modulation schemes like128-QAM, 256-QAM, 512-QAM and1024-QAM. This work is focusing on the investigation of the powerful capability of the natural logarithmic properties and the possibility of extracting Higher-Order Cumulant's (HOC) features from input data received raw. The HOC signals were extracted under Additive White Gaussian Noise (AWGN) channel with four effective parameters which were defined to distinguished the types of modulation from the set; 4-QAM~1024-QAM. This approach makes the recognizer more intelligent and improves the success rate of classification. From simulation results, which was achieved under statistical models for noisy channels, manifest that recognized algorithm executes was recognizing in M-QAM, furthermore, most results were promising and showed that the logarithmic classifier works well over both AWGN and different fading channels, as well as it can achieve a reliable recognition rate even at a lower signal-to-noise ratio (less than zero), it can be considered as an Integrated Automatic Modulation Classification (AMC) system in order to identify high order of M-QAM signals that applied a unique logarithmic classifier, to represents higher versatility, hence it has a superior performance via all previous works in automatic modulation identification systemComment: 18 page

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    A Survey of Blind Modulation Classification Techniques for OFDM Signals

    Get PDF
    Blind modulation classification (MC) is an integral part of designing an adaptive or intelligent transceiver for future wireless communications. Blind MC has several applications in the adaptive and automated systems of sixth generation (6G) communications to improve spectral efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent software-defined radios (SDR) for future communication. In this paper, we provide various MC techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We focus on the most widely used statistical and machine learning (ML) models and emphasize their advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods. This survey will help the reader to understand the main characteristics of each technique, their advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and ML-based algorithms, under various constraints, which allows a fair comparison among different methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is also provided. We also provide a survey of some practical experiment works carried out through National Instrument hardware over an indoor propagation environment. In the end, open problems and possible directions for blind MC research are briefly discussed

    Anwendung von maschinellem Lernen in der optischen Nachrichtenübertragungstechnik

    Get PDF
    Aufgrund des zunehmenden Datenverkehrs wird erwartet, dass die optischen Netze zukünftig mit höheren Systemkapazitäten betrieben werden. Dazu wird bspw. die kohärente Übertragung eingesetzt, bei der das Modulationsformat erhöht werden kann, erforder jedoch ein größeres SNR. Um dies zu erreichen, wird die optische Signalleistung erhöht, wodurch die Datenübertragung durch die nichtlinearen Beeinträchtigungen gestört wird. Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung von Modellen des maschinellen Lernens, die auf diese nichtlineare Signalverschlechterung reagieren. Es wird die Support-Vector-Machine (SVM) implementiert und als klassifizierende Entscheidungsmaschine verwendet. Die Ergebnisse zeigen, dass die SVM eine verbesserte Kompensation sowohl der nichtlinearen Fasereffekte als auch der Verzerrungen der optischen Systemkomponenten ermöglicht. Das Prinzip von EONs bietet eine Technologie zur effizienten Nutzung der verfügbaren Ressourcen, die von der optischen Faser bereitgestellt werden. Ein Schlüsselelement der Technologie ist der bandbreitenvariable Transponder, der bspw. die Anpassung des Modulationsformats oder des Codierungsschemas an die aktuellen Verbindungsbedingungen ermöglicht. Um eine optimale Ressourcenauslastung zu gewährleisten wird der Einsatz von Algorithmen des Reinforcement Learnings untersucht. Die Ergebnisse zeigen, dass der RL-Algorithmus in der Lage ist, sich an unbekannte Link-Bedingungen anzupassen, während vergleichbare heuristische Ansätze wie der genetische Algorithmus für jedes Szenario neu trainiert werden müssen

    Enabling Technologies for Cognitive Optical Networks

    Get PDF

    機械学習を用いたコグニティブ無線における変調方式識別に関する研究

    Get PDF
    The current spectrum allocation cannot satisfy the demand for future wireless communications, which prompts extensive studies in search of feasible solutions for the spectrum scarcity. The burden in terms of the spectral efficiency on the radio frequency terminal is intended to be small by cognitive radio (CR) systems that prefer low power transmission, changeable carrier frequencies, and diverse modulation schemes. However, the recent surge in the application of the CR has been accompanied by an indispensable component: the spectrum sensing, to avoid interference towards the primary user. This requirement leads to a complex strategy for sensing and transmission and an increased demand for signal processing at the secondary user. However, the performance of the spectrum sensing can be extended by a robust modulation classification (MC) scheme to distinguish between a primary user and a secondary user along with the interference identification. For instance, the underlying paradigm that enables a concurrent transmission of the primary and secondary links may need a precise measure of the interference that the secondary users cause to the primary users. An adjustment to the transmission power should be made, if there is a change in the modulation of the primary users, implying a noise oor excess at the primary user location; else, the primary user will be subject to interference and a collision may occur.Alternatively, the interweave paradigm that progresses the spectrum efficiency by reusing the allocated spectrum over a temporary space, requires a classification of the intercepted signal into primary and secondary systems. Moreover, a distinction between noise and interference can be accomplished by modulation classification, if spectrum sensing is impossible. Therefore, modulation classification has been a fruitful area of study for over three decades.In this thesis, the modulation classification algorithms using machine learning are investigated while new methods are proposed. Firstly, a supervised machine learning based modulation classification algorithm is proposed. The higher-order cumulants are selected as features, due to its robustness to noise. Stacked denoising autoencoders,which is an extended edition of the neural network, is chosen as the classifier. On one hand stacked pre-train overcomes the shortcoming of local optimization, on the other, denoising function further enhances the anti-noise performance. The performance of this method is compared with the conventional methods in terms of the classification accuracy and execution speed. Secondly, an unsupervised machine learning based modulation classification algorithm is proposed.The features from time-frequency distribution are extracted. Density-based spatial clustering of applications with noise (DBSCAN) is used as the classifier because it is impossible to decide the number of clusters in advance. The simulation reveals that this method has higher classification accuracy than the conventional methods. Moreover, the training phase is unnecessary for this method. Therefore, it has higher workability then supervised method. Finally, the advantages and dis-advantages of them are summarized.For the future work, algorithm optimization is still a challenging task, because the computation capability of hardware is limited. On one hand, for the supervised machine learning, GPU computation is a potential solution for supervised machine learning, to reduce the execution cost. Altering the modulation pool, the network structure has to be redesigned as well. On the other hand, for the unsupervised machine learning, that shifting the symbols to carrier frequency consumes extra computing resources.電気通信大学201

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    Producción CientíficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de Economía, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT
    corecore