314 research outputs found

    Identification of a biomarker panel for colorectal cancer diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries.</p> <p>Methods</p> <p>A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60-mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables.</p> <p>Results</p> <p>After an exhaustive process of pre-processing to ensure data quality--lost values imputation, probes quality, data smoothing and intraclass variability filtering--the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples.</p> <p>Conclusions</p> <p>We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955).</p

    Breast Cancer Classification by Gene Expression Analysis using Hybrid Feature Selection and Hyper-heuristic Adaptive Universum Support Vector Machine

    Get PDF
    Comprehensive assessments of the molecular characteristics of breast cancer from gene expression patterns can aid in the early identification and treatment of tumor patients. The enormous scale of gene expression data obtained through microarray sequencing increases the difficulty of training the classifier due to large-scale features. Selecting pivotal gene features can minimize high dimensionality and the classifier complexity with improved breast cancer detection accuracy. However, traditional filter and wrapper-based selection methods have scalability and adaptability issues in handling complex gene features. This paper presents a hybrid feature selection method of Mutual Information Maximization - Improved Moth Flame Optimization (MIM-IMFO) for gene selection along with an advanced Hyper-heuristic Adaptive Universum Support classification model Vector Machine (HH-AUSVM) to improve cancer detection rates. The hybrid gene selection method is developed by performing filter-based selection using MIM in the first stage followed by the wrapper method in the second stage, to obtain the pivotal features and remove the inappropriate ones. This method improves standard MFO by a hybrid exploration/exploitation phase to accomplish a better trade-off between exploration and exploitation phases. The classifier HH-AUSVM is formulated by integrating the Adaptive Universum learning approach to the hyper- heuristics-based parameter optimized SVM to tackle the class samples imbalance problem. Evaluated on breast cancer gene expression datasets from Mendeley Data Repository, this proposed MIM-IMFO gene selection-based HH-AUSVM classification approach provided better breast cancer detection with high accuracies of 95.67%, 96.52%, 97.97% and 95.5% and less processing time of 4.28, 3.17, 9.45 and 6.31 seconds, respectively

    Hybrid Filter and Genetic Algorithm-Based Feature Selection for Improving Cancer Classification in High-Dimensional Microarray Data

    Get PDF
    The advancements in intelligent systems have contributed tremendously to the fields of bioinformatics, health, and medicine. Intelligent classification and prediction techniques have been used in studying microarray datasets, which store information about the ways used to express the genes, to assist greatly in diagnosing chronic diseases, such as cancer in its earlier stage, which is important and challenging. However, the high-dimensionality and noisy nature of the microarray data lead to slow performance and low cancer classification accuracy while using machine learning techniques. In this paper, a hybrid filter-genetic feature selection approach has been proposed to solve the high-dimensional microarray datasets problem which ultimately enhances the performance of cancer classification precision. First, the filter feature selection methods including information gain, information gain ratio, and Chi-squared are applied in this study to select the most significant features of cancerous microarray datasets. Then, a genetic algorithm has been employed to further optimize and enhance the selected features in order to improve the proposed methodā€™s capability for cancer classification. To test the proficiency of the proposed scheme, four cancerous microarray datasets were used in the studyā€”this primarily included breast, lung, central nervous system, and brain cancer datasets. The experimental results show that the proposed hybrid filter-genetic feature selection approach achieved better performance of several common machine learning methods in terms of Accuracy, Recall, Precision, and F-measure

    Breast cancer diagnosis: a survey of pre-processing, segmentation, feature extraction and classification

    Get PDF
    Machine learning methods have been an interesting method in the field of medical for many years, and they have achieved successful results in various fields of medical science. This paper examines the effects of using machine learning algorithms in the diagnosis and classification of breast cancer from mammography imaging data. Cancer diagnosis is the identification of images as cancer or non-cancer, and this involves image preprocessing, feature extraction, classification, and performance analysis. This article studied 93 different references mentioned in the previous years in the field of processing and tries to find an effective way to diagnose and classify breast cancer. Based on the results of this research, it can be concluded that most of todayā€™s successful methods focus on the use of deep learning methods. Finding a new method requires an overview of existing methods in the field of deep learning methods in order to make a comparison and case study

    Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis

    Get PDF
    Background and Objectives: This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. Methods: In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. Results: It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Sup- port Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). Conclusions: It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society
    • ā€¦
    corecore