3,321 research outputs found
Divergent roles of CprK paralogues from Desulfitobacterium hafniense in activating gene expression
Gene duplication and horizontal gene transfer play an important role in the evolution of prokaryotic genomes. We have investigated the role of three CprK paralogues from the cAMP receptor protein-fumarate and nitrate reduction regulator (CRP-FNR) family of transcriptional regulators that are encoded in the genome of Desulfitobacterium hafniense DCB-2 and possibly regulate expression of genes involved in the energy-conserving terminal reduction of organohalides (halorespiration). The results from in vivo and in vitro promoter probe assays show that two regulators (CprK1 and CprK2) have an at least partially overlapping effector specificity, with preference for ortho-chlorophenols, while meta-chlorophenols proved to be effectors for CprK4. The presence of a potential transposase-encoding gene in the vicinity of the cprK genes indicates that their redundancy is probably caused by mobile genetic elements. The CprK paralogues activated transcription from promoters containing a 14 bp inverted repeat (dehalobox) that closely resembles the FNR-box. We found a strong negative correlation between the rate of transcriptional activation and the number of nuclecitide changes from the optimal dehalobox sequence (TTAAT-N-4-ATTAA). Transcription was initiated by CprK4 from a promoter that is situated upstream of a gene encoding a methyl-accepting chemotaxis protein. This might be the first indication of taxis of an anaerobic bacterium to halogenated aromatic compounds
Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility
Although most organisms have detoxification abilities (i.e mineralization, transformation and/or immobilization of pollutants), microorganisms, particularly bacteria, play a crucial role in biogeochemical cycles and in sustainable development of the biosphere. Next to glucosyl residues, the benzene ring is the most widely distributed unit of chemical structure in nature, and many of the aromatic compounds are major environmental pollutants. Bacteria have developed strategies for obtaining energy from virtually every compound under oxic or anoxic conditions (using alternative final electron acceptors such as nitrate, sulfate, and ferric ions). Clusters of genes coding for the catabolism of aromatic compounds are usually found in mobile genetic elements, such as transposons and plasmids, which facilitate their horizontal gene transfer and, therefore, the rapid adaptation of microorganisms to new pollutants. A successful strategy for in situ bioremediation has been the combination, in a single bacterial strain or in a syntrophic bacterial consortium, of different degrading abilities with genetic traits that provide selective advantages in a given environment. The advent of high-throughput methods for DNA sequencing and analysis of gene expression (genomics) and function (proteomics), as well as advances in modelling microbial metabolism in silico, provide a global, rational approach to unravel the largely unexplored potentials of microorganisms in biotechnological processes thereby facilitating sustainable development. [Int Microbiol 2004; 7(3):173-180
GENETICS AND BIOCHEMISTRY OF DEHALOGENATING ENZYMES
Microorganisms that can utilize halogenated compounds as a growth substrate generally produce enzymes whose function is carbon-halogen bond cleavage. Based on substrate range, reaction type and gene sequences, the dehalogenating enzymes can be classified in different groups, including hydrolytic dehalogenases, glutathione transferases, monooxygenases and hydratases. X-ray crystallographic and biochemical studies have provided detailed mechanistic insight into the action of haloalkane dehalogenase. The essential features are nucleophilic substitution of the halogen by a carboxylate group and the presence of a distinct halogen binding site, formed by tryptophan residues. This review summaries current knowledge on a variety of other dehalogenating enzymes and indicates the existence of a widespread and diverse microbial potential for dechlorination of natural and xenobiotic halogenated compounds
The Ah receptor: adaptive metabolism, ligand diversity, and the xenokine model
Author Posting. © American Chemical Society, 2020. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Chemical Research in Toxicology, 33(4), (2020): 860-879, doi:10.1021/acs.chemrestox.9b00476.The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins (“dioxins”), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.This review is dedicated in memory of the career of Alan Poland, one of the truly great minds in pharmacology and toxicology. This work was supported by the National Institutes of Health Grants R35-ES028377, T32-ES007015, P30-CA014520, P42-ES007381, and U01-ES1026127, The UW SciMed GRS Program, and The Morgridge Foundation. The authors would like to thank Catherine Stanley of UW Media Solutions for her artwork
COMETABOLIC DEGRADATION OF CHLOROALLYL ALCOHOLS IN BATCH AND CONTINUOUS CULTURES
The biodegradation of chloroallyl alcohols by pure and mixed bacterial cultures was investigated. Only 2-chloroallyl alcohol and cis- and trans-3-chloroallyl alcohol served as growth substrate for pure cultures. The other chloroallyl alcohols could be cometabolically degraded during growth on 2-chloroallyl alcohol. Cometabolic degradation of trichloroallyl alcohol, which was the most recalcitrant congener, by a Pseudomonas strain isolated on 2-chloroallyl alcohol resulted in 60% dechlorination. Efficient degradation of a mixture of chloroallyl alcohols in continuous culture could only be achieved in the presence of a satellite population. The mixed culture degraded 99% of the total chloroallyl alcohols added with 71% chloride release. The culture contained strains with a new catabolic potential. The results indicate the importance of mixed cultures and genetic adaptation for efficient chloroallyl alcohol removal
Genetically modified organisms for the environment: stories of success and failure and what we have learned from them
The expectations raised in the mid-1980s on the potential of genetic engineering for in situ remediation of environmental pollution have not been entirely fulfilled. Yet, we have learned a good deal about the expression of catabolic pathways by bacteria in their natural habitats, and how environmental conditions dictate the expression of desired catalytic activities. The many different choices between nutrients and responses to stresses form a network of transcriptional switches which, given the redundance and robustness of the regulatory circuits involved, can be neither unraveled through standard genetic analysis nor artificially programmed in a simple manner. Available data suggest that population dynamics and physiological control of catabolic gene expression prevail over any artificial attempt to engineer an optimal performance of the wanted catalytic activities. In this review, several valuable spin-offs of past research into genetically modified organisms with environmental applications are discussed, along with the impact of Systems Biology and Synthetic Biology in the future of environmental biotechnology. [Int Microbiol 2005; 8(3):213-222
Prospects for harnessing biocide resistance for bioremediation and detoxification
Prokaryotes in natural environments respond rapidly to high concentrations of chemicals and physical stresses. Exposure to anthropogenic toxic substancessuch as oil, chlorinated solvents, or antibioticsfavors the evolution of resistant phenotypes, some of which can use contaminants as an exclusive carbon source or as electron donors and acceptors. Microorganisms similarly adapt to extreme pH, metal, or osmotic stress. The metabolic plasticity of prokaryotes can thus be harnessed for bioremediation and can be exploited in a variety of ways, ranging from stimulated natural attenuation to bioaugmentation and from wastewater treatment to habitat restoration.We thank H. Stroo (Stroo Consulting) and C. Aziz (Ramboll) for providing photographs of bioaugmentation with OHRB, and H. Patzelt (Mazoon Environmental and Technological Services) for providing photographs of bioaugmentation with halophilic microorganisms. Funding: S.A., I.S.-A., and A.J.M.S. are supported by the Netherlands Ministry of Education, Culture and Science (project 024.002.002) and advanced ERC grant (project 323009). H.S. and S.A. were supported by a grant of BE-Basic-FES funds from the Dutch Ministry of Economic Affairs. H.S., J.R.v.d.M., and H.J.H. were supported by the European Commission (BACSIN, contract 211684; P4SB, contract 633962).info:eu-repo/semantics/publishedVersio
Solation and Characterization of a Novel Benzoate- Utilizing Serratia Marcescens
A new benzoate-utilizing strain, Serratia marcescens DS-8, isolated from the environment was characterized. The strain was enterobacilli, Gram negative, mesophilic, non halophilic, and aerobic bacterium that showed motile ovale-rod shaped cells. The isolate produced extracellular chitinase, protease, and prodigiosin (a red pigment produced by several Serratia strains yielding bright red or pink colonies). A physiological assay using Microbact* test showed that the strain was closely related to Klebsiella ozaenae (49.85%) and Serratia liquefaciens (24.42%), respectively. However, 16S rRNA sequence analysis indicated that the strain was closely related to S. marcescens DSM 30121 with similarity level of 98%. DS-8 strain was able to synthesize its own vitamins. Optimum growth in benzoate was obtained at pH between 7-8.5 and NaCl concentration of 1-1.5% (w/v). The isolate could grow in benzoate-containing medium up to 10 mM. Other carbon sources that could support the growth of DS-8 were casamino acid, glutamate, glucose, acetate, potato starch, and ethanol
Involvement of several transcriptional regulators in the differential expression of tfd genes in Cupriavidus necator JMP134
Cupriavidus necator JMP134 has been extensively studied because of its ability to degrade chloroaromatic compounds, including the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 3-chlorobenzoic acid (3-CB), which is achieved through the pJP4-encoded chlorocatechol degradation gene clusters: tfdCIDIEIFI and tfdDIICIIEIIFII. The present work describes a different tfd-genes expression profile depending on whether C. necator cells were induced with 2,4-D or 3-CB. By contrast, in vitro binding assays of the purified transcriptional activator TfdR showed similar binding to both tfd intergenic regions; these results were confirmed by in vivo studies of the expression of transcriptional lacZ fusions for these intergenic regions. Experiments aimed at investigating whether other pJP4 plasmid or chromosomal regulatory proteins could contribute to the differences in the response of both tfd promoters to induction by 2,4-D and 3-CB showed that the transcriptional regulators from the benzoate degradation pathway, CatR1 and CatR2, affected 3-CB- and 2,4-D-related growth capabilities. It was also determined that the ISJP4-interrupted protein TfdT decreased growth on 3-CB. In addition, an ORF with 34% amino acid identity to IclR-type transcriptional regulator members and located near the tfdII gene cluster module was shown to modulate the 2,4-D growth capability. Taken together, these results suggest that tfd transcriptional regulation in C. necator JMP134 is far more complex than previously thought and that it involves proteins from different transcriptional regulator families.
[Int Microbiol 2009; 12(2):97-106
- …
