1,101 research outputs found

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    Mathematics in Software Reliability and Quality Assurance

    Get PDF
    This monograph concerns the mathematical aspects of software reliability and quality assurance and consists of 11 technical papers in this emerging area. Included are the latest research results related to formal methods and design, automatic software testing, software verification and validation, coalgebra theory, automata theory, hybrid system and software reliability modeling and assessment

    Refining Ensembles of Predicted Gene Regulatory Networks Based on Characteristic Interaction Sets

    Get PDF
    Different ensemble voting approaches have been successfully applied for reverse-engineering of gene regulatory networks. They are based on the assumption that a good approximation of true network structure can be derived by considering the frequencies of individual interactions in a large number of predicted networks. Such approximations are typically superior in terms of prediction quality and robustness as compared to considering a single best scoring network only. Nevertheless, ensemble approaches only work well if the predicted gene regulatory networks are sufficiently similar to each other. If the topologies of predicted networks are considerably different, an ensemble of all networks obscures interesting individual characteristics. Instead, networks should be grouped according to local topological similarities and ensemble voting performed for each group separately. We argue that the presence of sets of co-occurring interactions is a suitable indicator for grouping predicted networks. A stepwise bottom-up procedure is proposed, where first mutual dependencies between pairs of interactions are derived from predicted networks. Pairs of co-occurring interactions are subsequently extended to derive characteristic interaction sets that distinguish groups of networks. Finally, ensemble voting is applied separately to the resulting topologically similar groups of networks to create distinct group-ensembles. Ensembles of topologically similar networks constitute distinct hypotheses about the reference network structure. Such group-ensembles are easier to interpret as their characteristic topology becomes clear and dependencies between interactions are known. The availability of distinct hypotheses facilitates the design of further experiments to distinguish between plausible network structures. The proposed procedure is a reasonable refinement step for non-deterministic reverse-engineering applications that produce a large number of candidate predictions for a gene regulatory network, e. g. due to probabilistic optimization or a cross-validation procedure

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Modeling of dynamic systems with Petri nets and fuzzy logic

    Get PDF
    Aktuelle Methoden zur dynamischen Modellierung von biologischen Systemen sind für Benutzer ohne mathematische Ausbildung oft wenig verständlich. Des Weiteren fehlen sehr oft genaue Daten und detailliertes Wissen über Konzentrationen, Reaktionskinetiken oder regulatorische Effekte. Daher erfordert eine computergestützte Modellierung eines biologischen Systems, mit Unsicherheiten und grober Information umzugehen, die durch qualitatives Wissen und natürlichsprachliche Beschreibungen zur Verfügung gestellt wird. Der Autor schlägt einen neuen Ansatz vor, mit dem solche Beschränkungen überwunden werden können. Dazu wird eine Petri-Netz-basierte graphische Darstellung von Systemen mit einer leistungsstarken und dennoch intuitiven Fuzzy-Logik-basierten Modellierung verknüpft. Der Petri Netz und Fuzzy Logik (PNFL) Ansatz erlaubt eine natürlichsprachlich-basierte Beschreibung von biologischen Entitäten sowie eine Wenn-Dann-Regel-basierte Definition von Reaktionen. Beides kann einfach und direkt aus qualitativem Wissen abgeleitet werden. PNFL verbindet damit qualitatives Wissen und quantitative Modellierung.Current approaches in dynamic modeling of biological systems often lack comprehensibility,n especially for users without mathematical background. Additionally, exact data or detailed knowledge about concentrations, reaction kinetics or regulatory effects is missing. Thus, computational modeling of a biological system requires dealing with uncertainty and rough information provided by qualitative knowledge and linguistic descriptions. The author proposes a new approach to overcome such limitations by combining the graphical representation provided by Petri nets with the modeling of dynamics by powerful yet intuitive fuzzy logic based systems. The Petri net and fuzzy logic (PNFL) approach allows natural language based descriptions of biological entities as well as if-then rule based definitions of reactions, both of which can be easily and directly derived from qualitative knowledge. PNFL bridges the gap between qualitative knowledge and quantitative modeling
    corecore