30 research outputs found

    Enumerating Knight\u27s Tours using an Ant Colony Algorithm

    Get PDF
    In this paper, we show how an ant colony optimisation algorithm may be used to enumerate knight\u27s tours for variously sized chessboards. We have used the algorithm to enumerate all tours on 5×5 and 6×6 boards, and, while the number of tours on an 8×8 board is too large for a full enumeration, our experiments suggest that the algorithm is able to uniformly sample tours at a constant, fast rate for as long as is desired

    Data hiding techniques in steganography using fibonacci sequence and knight tour algorithm

    Get PDF
    The foremost priority in the information and communication technology era, is achieving an efficient and accurate steganography system for hiding information. The developed system of hiding the secret message must capable of not giving any clue to the adversaries about the hidden data. In this regard, enhancing the security and capacity by maintaining the Peak Signal-to-Noise Ratio (PSNR) of the steganography system is the main issue to be addressed. This study proposed an improved for embedding secret message into an image. This newly developed method is demonstrated to increase the security and capacity to resolve the existing problems. A binary text image is used to represent the secret message instead of normal text. Three stages implementations are used to select the pixel before random embedding to select block of (64 × 64) pixels, follows by the Knight Tour algorithm to select sub-block of (8 × 8) pixels, and finally by the random pixels selection. For secret embedding, Fibonacci sequence is implemented to decomposition pixel from 8 bitplane to 12 bitplane. The proposed method is distributed over the entire image to maintain high level of security against any kind of attack. Gray images from the standard dataset (USC-SIPI) including Lena, Peppers, Baboon, and Cameraman are implemented for benchmarking. The results show good PSNR value with high capacity and these findings verified the worthiness of the proposed method. High complexities of pixels distribution and replacement of bits will ensure better security and robust imperceptibility compared to the existing systems in the literature

    Bit inverting map method for improved steganography scheme

    Get PDF
    Achieving an efficient and accurate steganography scheme for hiding information is the foremost priority in the information and communication technology era. The developed scheme of hiding the secret message must capable of not giving any clue to the adversaries about the hidden data. In this regard, enhancing the security and capacity by maintaining the Peak Signal-to-Noise Ratio (PSNR) of the steganography scheme is the main issue to be addressed. This study proposes an improved Bit Inverting Map (BIM) method and a new scheme for embedding secret message into an image. This newly developed scheme is demonstrated to increase the security and capacity to resolve the existing problems. A binary text image is used to represent the secret message instead of normal text. Three stages implementations are used to select pixels before random embedding to select block of (64 64) pixels, followed by the Knight Tour algorithm to select sub-block of (8 8) pixels, and finally by the random pixels selection. The proposed BIM is distributed over the entire image to maintain high level of security against any kind of attack. One-bit indicator is used to decide if the secret bits are inserted directly or inversely, which enhanced the complexity of embedding process. Color and gray images from the standard dataset (USC-SIPI) including Lena, Peppers, Baboon, and Cameraman are implemented for benchmarking. Self-captured images are used to test the efficacy of the proposed BIM method. The results show good PSNR values of 72.9 and these findings verified the worthiness of the proposed BIM method. High complexities of pixels distribution and replacement of bits will ensure better security and robust imperceptibility compared to the existing scheme in the literature

    Modified MST Algorithms for TSP Tours

    Get PDF

    Genetic algorithms in timetabling and scheduling

    Get PDF
    Thio thesis investigates the use of genetic algorithms (GAs) for solving a range of timetabling and scheduling problems. Such problems arc very hard in general, and GAs offer a useful and successful alternative to existing techniques.A framework is presented for GAs to solve modular timetabling problems in edu¬ cational institutions. The approach involves three components: declaring problemspecific constraints, constructing a problem specific evaluation function and using a problem-independent GA to attempt to solve the problem. Successful results are demonstrated and a general analysis of the reliability and robustness of the approach is conducted. The basic approach can readily handle a wide variety of general timetabling problem constraints, and is therefore likely to be of great practical usefulness (indeed, an earlier version is already in use). The approach rclicG for its success on the use of specially designed mutation operators which greatly improve upon the performance of a GA with standard operators.A framework for GAs in job shop and open shop scheduling is also presented. One of the key aspects of this approach is the use of specially designed representations for such scheduling problems. The representations implicitly encode a schedule by encoding instructions for a schedule builder. The general robustness of this approach is demonstrated with respect to experiments on a range of widely-used benchmark problems involving many different schedule quality criteria. When compared against a variety of common heuristic search approaches, the GA approach is clearly the most successful method overall. An extension to the representation, in which choices of heuristic for the schedule builder arc also incorporated in the chromosome, iG found to lead to new best results on the makespan for some well known benchmark open shop scheduling problems. The general approach is also shown to be readily extendable to rescheduling and dynamic scheduling

    Triple scheme based on image steganography to improve imperceptibility and security

    Get PDF
    A foremost priority in the information technology and communication era is achieving an effective and secure steganography scheme when considering information hiding. Commonly, the digital images are used as the cover for the steganography owing to their redundancy in the representation, making them hidden to the intruders. Nevertheless, any steganography system launched over the internet can be attacked upon recognizing the stego cover. Presently, the design and development of an effective image steganography system are facing several challenging issues including the low capacity, poor security, and imperceptibility. Towards overcoming the aforementioned issues, a new decomposition scheme was proposed for image steganography with a new approach known as a Triple Number Approach (TNA). In this study, three main stages were used to achieve objectives and overcome the issues of image steganography, beginning with image and text preparation, followed by embedding and culminating in extraction. Finally, the evaluation stage employed several evaluations in order to benchmark the results. Different contributions were presented with this study. The first contribution was a Triple Text Coding Method (TTCM), which was related to the preparation of secret messages prior to the embedding process. The second contribution was a Triple Embedding Method (TEM), which was related to the embedding process. The third contribution was related to security criteria which were based on a new partitioning of an image known as the Image Partitioning Method (IPM). The IPM proposed a random pixel selection, based on image partitioning into three phases with three iterations of the Hénon Map function. An enhanced Huffman coding algorithm was utilized to compress the secret message before TTCM process. A standard dataset from the Signal and Image Processing Institute (SIPI) containing color and grayscale images with 512 x 512 pixels were utilised in this study. Different parameters were used to test the performance of the proposed scheme based on security and imperceptibility (image quality). In image quality, four important measurements that were used are Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Square Error (MSE) and Histogram analysis. Whereas, two security measurements that were used are Human Visual System (HVS) and Chi-square (X2) attacks. In terms of PSNR and SSIM, the Lena grayscale image obtained results were 78.09 and 1 dB, respectively. Meanwhile, the HVS and X2 attacks obtained high results when compared to the existing scheme in the literature. Based on the findings, the proposed scheme give evidence to increase capacity, imperceptibility, and security to overcome existing issues

    Innovation and new venture creation

    Get PDF
    [SPA] Crear lo "nuevo" para resolver problemas es una hazaña incierta. Aun así, el ser humano ha innovado y aplicado el ingenio durante milenios, llegando a crear nuevas herramientas, puentes y empresas, a pesar de la falta de recursos o de claridad en los objetivos. En este sentido, el problema de la asimetría de información (cómo se desplegará el futuro) y de la asimetría de recursos (de qué medios se dispondrá) motivó esta tesis. En particular, el problema de cómo los emprendedores crean nuevos emprendimientos e innovan bajo la incertidumbre y sin objetivos iniciales claros. Esta tesis pretende contribuir a la comprensión de la innovación y la creación de nuevos emprendimientos utilizando una lógica no predictiva (effectuation) y métodos ágiles (utilizados por las aceleradoras de startups) como principios orientadores de esta discusión. Effectuation es una lógica común aplicada por los emprendedores expertos para resolver los problemas típicos de la innovación y creación de nuevas empresas. Se trata de una heurística de control no predictiva que los emprendedores ponen en práctica a través de cinco principios de acción effectual al abordar las incertidumbres y sorpresas en la creación de nuevos productos, servicios o mercados: 1) Principio de "pájaro en mano": construyen un nuevo emprendimiento no necesariamente con un objetivo en mente, sino partiendo de sus propios medios y recursos (quiénes son, qué saben, a quienes conocen), 2) Principio de "pérdida asequible": no hacen grandes apuestas con la expectativa de obtener grandes beneficios, sino que evalúan las oportunidades en función de las desventajas aceptables, 3) Principio de "colcha loca": reducen la incertidumbre formando asociaciones y obteniendo compromisos iniciales en las primeras fases de sus nuevas empresas, 4) Principio de la “limonada”: aprovechan las contingencias en lugar de rechazarlas, permaneciendo flexibles y adaptando sus proyectos según sea necesario, 5) Principio del “piloto en el avión”: se centran en controlar lo que sea controlable en su entorno, entendiendo que el futuro no se encuentra ni se predice, sino que se hace a través de la acción humana. Las aceleradoras y los métodos ágiles activan los principios effectual a través de herramientas y prescripciones que reducen sistemáticamente las inversiones mientras se crea un nuevo emprendimiento. Las aceleradoras promueven ampliamente los métodos ágiles (por ejemplo, el modelo de desarrollo de clientes, los sprints de diseño, el ciclo de innovación rápida) para construir prototipos y primeras versiones de productos y servicios mientras se descubren los clientes y partners iniciales. Además, reduce el riesgo para los inversores en todas las fases de crecimiento de las startups al validar la idea del emprendimiento y aclarar qué recursos serán necesarios. En este sentido, esta tesis examinó si, y en qué medida, los emprendedores construyen nuevas empresas utilizando effectuation y métodos ágiles mediante la creación de tres innovaciones reales con aplicaciones en el mundo real. Los tres casos eran pruebas de concepto implementadas en contextos del mundo real con el objetivo explícito de lanzar Productos Mínimos Viables (Minimum Viable Products, MVP) pero bajo incertidumbre y con ambigüedad de objetivos sobre su funcionalidad. Las tres aplicaciones eran soluciones tecnológicas a problemas de congestión del tráfico, pandemias y confianza en las transacciones digitales. La aplicación 1, "Lemur", es una aplicación edge para el control del tráfico; la aplicación 2, "Dolphin", un sistema de geolocalización basado en sensores e Internet de las Cosas (Internet of Things, IoT) aplicado para el control de pandemias y la aplicación 3, "Crypto Degrees", una solución basada en blockchain para verificar títulos universitarios. En todas las etapas del desarrollo de cada aplicación, los equipos implicados la abordaron de forma emprendedora/eficaz, afrontando las incertidumbres y emprendiendo acciones para comprometerse con múltiples partes interesadas al tiempo que apalancaban las contingencias. Tras implementar las tres soluciones y analizar sus resultados e impacto, los tres casos validaron las predicciones teóricas de que, aplicando principios effectual de forma ágil, se pueden crear nuevos emprendimientos de forma emprendedora e innovadora. [ENG] Creating the "new" to solve problems is an uncertain feat. Still, humans have innovated and applied Ingenium for millennia, eventually creating new tools, bridges, and ventures, despite a lack of resources or clarity of objectives. In this sense, the problem of information asymmetry (how the future will deploy) and resource asymmetry (what means will be available) motivated this thesis. In particular, the problem of how entrepreneurs create new ventures and innovate under uncertainty and without clear initial goals. This thesis aims to contribute to understanding innovation and the creation of new ventures using a non-predictive logic (effectuation) and agile methods (used by startup accelerators) as guiding principles of this discussion. Effectuation is a common logic applied by expert entrepreneurs to solve the typical problems of starting new ventures and innovating. It is a non-predictive control heuristics entrepreneurs operationalize through five principles of effectual action while addressing the uncertainties and contingencies in creating new products, services or markets: 1) Bird-in-hand principle: they build a new venture not necessarily with a goal in mind, but starting with their own means and resources (who they are, what they know, who they know), 2) Affordable loss principle: they do not place large bets with the expectation of high returns, but rather assess opportunities based on acceptable downsides, 3) Crazy quilt principle: they reduce uncertainty by forming partnerships and gaining initial commitments early in their new ventures, 4) Lemonade principle: they leverage contingencies instead of rejecting them, remaining flexible and adapting their projects as required, 5) Pilot in the plane principle: they focus on controlling whatever is controllable in their environment, understanding that the future is not found or predicted, but it is made through human action. Accelerators and agile methods activate the effectual principles through tools and prescriptions that systematically reduce investments while creating a new venture. Accelerators extensively promote "agile" methods (e.g., customer development model, design sprints, rapid innovation cycle) to build prototypes and early versions Effectuation is a common logic applied by expert entrepreneurs to solve the typical problems of starting new ventures and innovating. It is a non-predictive control heuristics entrepreneurs operationalize through five principles of effectual action while addressing the uncertainties and contingencies in creating new products, services or markets: 1) Bird-in-hand principle: they build a new venture not necessarily with a goal in mind, but starting with their own means and resources (who they are, what they know, who they know), 2) Affordable loss principle: they do not place large bets with the expectation of high returns, but rather assess opportunities based on acceptable downsides, 3) Crazy quilt principle: they reduce uncertainty by forming partnerships and gaining initial commitments early in their new ventures, 4) Lemonade principle: they leverage contingencies instead of rejecting them, remaining flexible and adapting their projects as required, 5) Pilot in the plane principle: they focus on controlling whatever is controllable in their environment, understanding that the future is not found or predicted, but it is made through human action. Accelerators and agile methods activate the effectual principles through tools and prescriptions that systematically reduce investments while creating a new venture. Accelerators extensively promote "agile" methods (e.g., customer development model, design sprints, rapid innovation cycle) to build prototypes and early versions of products and services while discovering the initial customers and partners. Additionally, it reduces the risk for investors across all startup growth phases by validating the venture idea and clarifying what resources will be required. In this sense, this thesis examined whether and to what extent entrepreneurs build new ventures using effectuation and agile methods by creating three actual innovations with real-world applications. The three cases were proofs of concept implemented in real-world contexts with the explicit goal of launching Minimum Viable Products (MVPs) but under uncertainty and with ambiguity of objectives about its functionality. The three applications were technological solutions to problems of traffic congestion, pandemics, and trust in digital transactions. Application 1, "Lemur," is an edge application for traffic control; application 2, "Dolphin," an Internet of Things (IoT)-based geolocation system applied for pandemic control and application 3, "Crypto Degrees," a blockchainbased solution to verify university degrees. In all stages of each application development, the teams involved approached it in an entrepreneurial/effectual way, facing uncertainties and engaging in actions to engage with multiple stakeholders while leveraging contingencies. After implementing the three solutions and analyzing their results and impact, the three cases validated the theoretical predictions that by applying effectual principles in an agile form, new ventures can be created in an entrepreneurial, innovative way.Escuela Internacional de Doctorado de la Universidad Politécnica de CartagenaUniversidad Politécnica de CartagenaPrograma Doctorado en Tecnologías de la Información y las Comunicacione

    2017 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Eleventh Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1011/thumbnail.jp
    corecore