3,953 research outputs found

    Hybrid ant colony system and genetic algorithm approach for scheduling of jobs in computational grid

    Get PDF
    Metaheuristic algorithms have been used to solve scheduling problems in grid computing.However, stand-alone metaheuristic algorithms do not always show good performance in every problem instance. This study proposes a high level hybrid approach between ant colony system and genetic algorithm for job scheduling in grid computing.The proposed approach is based on a high level hybridization.The proposed hybrid approach is evaluated using the static benchmark problems known as ETC matrix.Experimental results show that the proposed hybridization between the two algorithms outperforms the stand-alone algorithms in terms of best and average makespan values

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Hybrid ant colony system algorithm for static and dynamic job scheduling in grid computing

    Get PDF
    Grid computing is a distributed system with heterogeneous infrastructures. Resource management system (RMS) is one of the most important components which has great influence on the grid computing performance. The main part of RMS is the scheduler algorithm which has the responsibility to map submitted tasks to available resources. The complexity of scheduling problem is considered as a nondeterministic polynomial complete (NP-complete) problem and therefore, an intelligent algorithm is required to achieve better scheduling solution. One of the prominent intelligent algorithms is ant colony system (ACS) which is implemented widely to solve various types of scheduling problems. However, ACS suffers from stagnation problem in medium and large size grid computing system. ACS is based on exploitation and exploration mechanisms where the exploitation is sufficient but the exploration has a deficiency. The exploration in ACS is based on a random approach without any strategy. This study proposed four hybrid algorithms between ACS, Genetic Algorithm (GA), and Tabu Search (TS) algorithms to enhance the ACS performance. The algorithms are ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These proposed hybrid algorithms will enhance ACS in terms of exploration mechanism and solution refinement by implementing low and high levels hybridization of ACS, GA, and TS algorithms. The proposed algorithms were evaluated against twelve metaheuristic algorithms in static (expected time to compute model) and dynamic (distribution pattern) grid computing environments. A simulator called ExSim was developed to mimic the static and dynamic nature of the grid computing. Experimental results show that the proposed algorithms outperform ACS in terms of best makespan values. Performance of ACS(GA), ACS+GA, ACS(TS), and ACS+TS are better than ACS by 0.35%, 2.03%, 4.65% and 6.99% respectively for static environment. For dynamic environment, performance of ACS(GA), ACS+GA, ACS+TS, and ACS(TS) are better than ACS by 0.01%, 0.56%, 1.16%, and 1.26% respectively. The proposed algorithms can be used to schedule tasks in grid computing with better performance in terms of makespan

    A performance comparison of data-aware heuristics for scheduling jobs in mobile Grids

    Get PDF
    Given mobile devices ubiquity and capabilities, some researchers now consider them as resource providers of distributed environments called mobile Grids for running resource intensive software. Therefore, job scheduling has to deal with device singularities, such as energy constraints, mobility and unstable connectivity. Many existing schedulers consider at least one of these aspects, but their applicability strongly depends on information that is unavailable or difficult to estimate accurately, like job execution time. Other efforts do not assume knowing job CPU requirements but ignore energy consumption due to data transfer operations, which is not realistic for data-intensive applications. This work, on the contrary, considers the last as non negligible and known by the scheduler. Under these assumptions, we conduct a performance study of several traditional scheduling heuristics adapted to this environment, which are applied with the known information of jobs but evaluated along with job information unknown to the scheduler. Experiments are performed via a simulation software that employs hardware profiles derived from real mobile devices. Our goal is to contribute to better understand both the capabilities and limitations of this kind of schedulers in the incipient area of mobile Grids.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    A performance comparison of data-aware heuristics for scheduling jobs in mobile Grids

    Get PDF
    Given mobile devices ubiquity and capabilities, some researchers now consider them as resource providers of distributed environments called mobile Grids for running resource intensive software. Therefore, job scheduling has to deal with device singularities, such as energy constraints, mobility and unstable connectivity. Many existing schedulers consider at least one of these aspects, but their applicability strongly depends on information that is unavailable or difficult to estimate accurately, like job execution time. Other efforts do not assume knowing job CPU requirements but ignore energy consumption due to data transfer operations, which is not realistic for data-intensive applications. This work, on the contrary, considers the last as non negligible and known by the scheduler. Under these assumptions, we conduct a performance study of several traditional scheduling heuristics adapted to this environment, which are applied with the known information of jobs but evaluated along with job information unknown to the scheduler. Experiments are performed via a simulation software that employs hardware profiles derived from real mobile devices. Our goal is to contribute to better understand both the capabilities and limitations of this kind of schedulers in the incipient area of mobile Grids.Sociedad Argentina de Informática e Investigación Operativa (SADIO
    corecore