5,541 research outputs found

    Multi-objective evolutionary–fuzzy augmented flight control for an F16 aircraft

    Get PDF
    In this article, the multi-objective design of a fuzzy logic augmented flight controller for a high performance fighter jet (the Lockheed-Martin F16) is described. A fuzzy logic controller is designed and its membership functions tuned by genetic algorithms in order to design a roll, pitch, and yaw flight controller with enhanced manoeuverability which still retains safety critical operation when combined with a standard inner-loop stabilizing controller. The controller is assessed in terms of pilot effort and thus reduction of pilot fatigue. The controller is incorporated into a six degree of freedom motion base real-time flight simulator, and flight tested by a qualified pilot instructor

    Efficiency of network structures: The needle in the haystack

    Get PDF
    The modelling of networks formation has recently became the object of an increasing interest in economics. One of the important issues raised in this literature is the one of networks efficiency. Nevertheless, for non trivial payoff functions, searching for efficient network structures turns out to be a very difficult analytical problem as well as a huge computational task, even for a relatively small number of agents. In this paper, we explore the possibility of using genetic algorithms (GA) techniques for identifying efficient network structures, because the GA have proved their power as a tool for solving complex optimization problems. The robustness of this method in predicting optimal network structures is tested on two simple stylized models introduced by Jackson and Wolinski (1996), for which the efficient networks are known over the whole state space of parameter values.Networks, Optimal network structure, Efficiency, Genetic Algorithms

    An empirical investigation into branch coverage for C programs using CUTE and AUSTIN

    Get PDF
    Automated test data generation has remained a topic of considerable interest for several decades because it lies at the heart of attempts to automate the process of Software Testing. This paper reports the results of an empirical study using the dynamic symbolic-execution tool. CUTE, and a search based tool, AUSTIN on five non-trivial open source applications. The aim is to provide practitioners with an assessment of what can be achieved by existing techniques with little or no specialist knowledge and to provide researchers with baseline data against which to measure subsequent work. To achieve this, each tool is applied 'as is', with neither additional tuning nor supporting harnesses and with no adjustments applied to the subject programs under test. The mere fact that these tools can be applied 'out of the box' in this manner reflects the growing maturity of Automated test data generation. However, as might be expected, the study reveals opportunities for improvement and suggests ways to hybridize these two approaches that have hitherto been developed entirely independently. (C) 2010 Elsevier Inc. All rights reserved

    Inferring gene ontologies from pairwise similarity data.

    Get PDF
    MotivationWhile the manually curated Gene Ontology (GO) is widely used, inferring a GO directly from -omics data is a compelling new problem. Recognizing that ontologies are a directed acyclic graph (DAG) of terms and hierarchical relations, algorithms are needed that: analyze a full matrix of gene-gene pairwise similarities from -omics data; infer true hierarchical structure in these data rather than enforcing hierarchy as a computational artifact; and respect biological pleiotropy, by which a term in the hierarchy can relate to multiple higher level terms. Methods addressing these requirements are just beginning to emerge-none has been evaluated for GO inference.MethodsWe consider two algorithms [Clique Extracted Ontology (CliXO), LocalFitness] that uniquely satisfy these requirements, compared with methods including standard clustering. CliXO is a new approach that finds maximal cliques in a network induced by progressive thresholding of a similarity matrix. We evaluate each method's ability to reconstruct the GO biological process ontology from a similarity matrix based on (a) semantic similarities for GO itself or (b) three -omics datasets for yeast.ResultsFor task (a) using semantic similarity, CliXO accurately reconstructs GO (>99% precision, recall) and outperforms other approaches (<20% precision, <20% recall). For task (b) using -omics data, CliXO outperforms other methods using two -omics datasets and achieves ∼30% precision and recall using YeastNet v3, similar to an earlier approach (Network Extracted Ontology) and better than LocalFitness or standard clustering (20-25% precision, recall).ConclusionThis study provides algorithmic foundation for building gene ontologies by capturing hierarchical and pleiotropic structure embedded in biomolecular data

    Efficient Hill Climber for Constrained Pseudo-Boolean Optimization Problems

    Get PDF
    Efficient hill climbers have been recently proposed for single- and multi-objective pseudo-Boolean optimization problems. For kk-bounded pseudo-Boolean functions where each variable appears in at most a constant number of subfunctions, it has been theoretically proven that the neighborhood of a solution can be explored in constant time. These hill climbers, combined with a high-level exploration strategy, have shown to improve state of the art methods in experimental studies and open the door to the so-called Gray Box Optimization, where part, but not all, of the details of the objective functions are used to better explore the search space. One important limitation of all the previous proposals is that they can only be applied to unconstrained pseudo-Boolean optimization problems. In this work, we address the constrained case for multi-objective kk-bounded pseudo-Boolean optimization problems. We find that adding constraints to the pseudo-Boolean problem has a linear computational cost in the hill climber.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Enabling Entrepreneurial Ecosystems

    Get PDF
    Inspired by research on the importance of entrepreneurship for sustained economic growth and improved wellbeing, many governments and non-governmental grantmaking organizations have sought over the past decade to implement policies and programs intended to support entrepreneurs. Over this interval, growing appreciation of the limits of strategies focused narrowly on financing or training entrepreneurs has prompted a number of such entities to shift their efforts toward more broadbased strategies aimed at enabling "entrepreneurial ecosystems" at the city or sub-national regional scale.This paper takes the metaphor of the "ecosystem" seriously, seeking to draw lessons from evolutionary biology and ecology to inform policy for entrepreneurship. In so doing, the paper provides a framework for data gathering and analysis of practical value in assessing the vibrancy of entrepreneurial ecosystems

    A Multi-objective Genetic Algorithm for Peptide Optimization

    Get PDF
    The peptide-based drug design process requires the identification of a wide range of candidate molecules with specific biological, chemical and physical properties. The laboratory analysis in terms of in vitro methods for the discovery of several physiochemical properties of theoretical candidate molecules is time- and cost-intensive. Hence, in silico methods are required for this purpose. Metaheuristics like evolutionary algorithms are considered to be adequate in silico methods providing good approximate solutions to the underlying multiobjective optimization problems. The general issue in this area is the design of a multi-objective evolutionary algorithm to achieve a maximum number of high-quality candidate peptides that differ in their genetic material, in a minimum number of generations. A multi-objective evolutionary algorithm as an in silico method of discovering a large number of high-quality peptides within a low number of generations for a broad class of molecular optimization problems of different dimensions is challenging, and the development of such a promising multi-objective evolutionary algorithm based on theoretical considerations is the major contribution of this thesis. The design of this algorithm is based on a qualitative landscape analysis applied on a three- and four-dimensional biochemical optimization problem. The conclusions drawn from the empirical landscape analysis of the three- and four-dimensional optimization problem result in the formulation of hypotheses regarding the types of evolutionary algorithm components which lead to an optimized search performance for the purpose of peptide optimization. Starting from the established types of variation operators and selection strategies, different variation operators and selection strategies are proposed and empirically verified on the three- and four-dimensional molecular optimization problem with regard to an optimized interaction and the identification of potential interdependences as well as a fine-tuning of the parameters. Moreover, traditional issues in the field of evolutionary algorithms such as selection pressure and the influence of multi-parent recombination are investigated
    corecore