15,387 research outputs found

    Enhancing evolutionary algorithms through recombination and parallelism

    Get PDF
    Evolutionary computation (EC) has been recently recognized as a research field, which studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process populations of solutions as opposed to most traditional approaches which improve a single solution. All these algorithms share common features: reproduction, random variation, competition and selection of individuals. During our research it was evident that some components of EAs should be re-examined. Hence, specific topics such as multiple crossovers per couple and its enhancements, multiplicity of parents and crossovers and their application to single and multiple criteria optimization problems, adaptability, and parallel genetic algorithms, were proposed and investigated carefully. This paper show the most relevant and recent enhancements on recombination for a genetic-algorithm-based EA and migration control strategies for parallel genetic algorithms. Details of implementation and results are discussed.Facultad de Informátic

    Enhancing evolutionary algorithms through recombination and parallelism

    Get PDF
    Evolutionary computation (EC) has been recently recognized as a research field, which studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process populations of solutions as opposed to most traditional approaches which improve a single solution. All these algorithms share common features: reproduction, random variation, competition and selection of individuals. During our research it was evident that some components of EAs should be re-examined. Hence, specific topics such as multiple crossovers per couple and its enhancements, multiplicity of parents and crossovers and their application to single and multiple criteria optimization problems, adaptability, and parallel genetic algorithms, were proposed and investigated carefully. This paper show the most relevant and recent enhancements on recombination for a genetic-algorithm-based EA and migration control strategies for parallel genetic algorithms. Details of implementation and results are discussed.Facultad de Informátic

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    A controlled migration genetic algorithm operator for hardware-in-the-loop experimentation

    Get PDF
    In this paper, we describe the development of an extended migration operator, which combats the negative effects of noise on the effective search capabilities of genetic algorithms. The research is motivated by the need to minimize the num- ber of evaluations during hardware-in-the-loop experimentation, which can carry a significant cost penalty in terms of time or financial expense. The authors build on previous research, where convergence for search methods such as Simulated Annealing and Variable Neighbourhood search was accelerated by the implementation of an adaptive decision support operator. This methodology was found to be effective in searching noisy data surfaces. Providing that noise is not too significant, Genetic Al- gorithms can prove even more effective guiding experimentation. It will be shown that with the introduction of a Controlled Migration operator into the GA heuristic, data, which repre- sents a significant signal-to-noise ratio, can be searched with significant beneficial effects on the efficiency of hardware-in-the- loop experimentation, without a priori parameter tuning. The method is tested on an engine-in-the-loop experimental example, and shown to bring significant performance benefits

    Enhancing evolutionary algorithms through recombination and parallelism

    Get PDF
    Evolutionary computation (EC) has been recently recognized as a research field, which studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process populations of solutions as opposed to most traditional approaches which improve a single solution. All these algorithms share common features: reproduction, random variation, competition and selection of individuals. During our research it was evident that some components of EAs should be re-examined. Hence, specific topics such as multiple crossovers per couple and its enhancements, multiplicity of parents and crossovers and their application to single and multiple criteria optimization problems, adaptability, and parallel genetic algorithms, were proposed and investigated carefully. This paper show the most relevant and recent enhancements on recombination for a genetic-algorithm-based EA and migration control strategies for parallel genetic algorithms. Details of implementation and results are discussed.I Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    High-speed detection of emergent market clustering via an unsupervised parallel genetic algorithm

    Full text link
    We implement a master-slave parallel genetic algorithm (PGA) with a bespoke log-likelihood fitness function to identify emergent clusters within price evolutions. We use graphics processing units (GPUs) to implement a PGA and visualise the results using disjoint minimal spanning trees (MSTs). We demonstrate that our GPU PGA, implemented on a commercially available general purpose GPU, is able to recover stock clusters in sub-second speed, based on a subset of stocks in the South African market. This represents a pragmatic choice for low-cost, scalable parallel computing and is significantly faster than a prototype serial implementation in an optimised C-based fourth-generation programming language, although the results are not directly comparable due to compiler differences. Combined with fast online intraday correlation matrix estimation from high frequency data for cluster identification, the proposed implementation offers cost-effective, near-real-time risk assessment for financial practitioners.Comment: 10 pages, 5 figures, 4 tables, More thorough discussion of implementatio
    corecore