343 research outputs found

    Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components

    Get PDF
    The recent Zika virus outbreak highlights the need for low-cost diagnostics that can be rapidly developed for distribution and use in pandemic regions. Here, we report a pipeline for the rapid design, assembly, and validation of cell-free, paper-based sensors for the detection of the Zika virus RNA genome. By linking isothermal RNA amplification to toehold switch RNA sensors, we detect clinically relevant concentrations of Zika virus sequences and demonstrate specificity against closely related Dengue virus sequences. When coupled with a novel CRISPR/Cas9-based module, our sensors can discriminate between viral strains with single-base resolution. We successfully demonstrate a simple, field-ready sample-processing workflow and detect Zika virus from the plasma of a viremic macaque. Our freeze-dried biomolecular platform resolves important practical limitations to the deployment of molecular diagnostics in the field and demonstrates how synthetic biology can be used to develop diagnostic tools for confronting global health crises.Defense Threat Reduction Agency (DTRA) (HDTRA1-14-1-0006)United States. National Institutes of Health (NIH AI100190

    Antimicrobial Activity and Genetic Profile of Enteroccoci Isolated from Hoopoes Uropygial Gland

    Get PDF
    Symbiotic microorganisms may be directly transferred from parents to offspring or acquired from a particular environment that animals may be able to select. If benefits for hosts vary among microbial strains, natural selection may favour hosts holding the most beneficial one. Enterococci symbionts living in the hoopoe (Upupa epops) uropygial gland are able to synthesise bacteriocins (antimicrobial peptides that inhibit the growth of competitor bacteria). We explored variability in genetic profile (through RAPD-PCR analyses) and antimicrobial properties (by performing antagonistic tests against ten bacterial indicator strains) of the different isolates obtained from the uropygial glands of hoopoe females and nestlings. We found that the genetic profile of bacterial isolates was related to antimicrobial activity, as well as to individual host identity and the nest from which samples were obtained. This association suggest that variation in the inhibitory capacity of Enterococci symbionts should be under selection.This work was financed by Ministerio de Ciencia e InnovaciĂłn (Spanish National Government) and FEDER founds (projects CGL2010-19233-C03-01, and CGL2010-19233-C03-03), and Junta de AndalucĂ­a (P09-RNM-4557)

    Morphology and ecology of fishery important, cryptic teleosts in Australia

    Get PDF
    Cryptic teleosts pose challenges to accurate species identification due to their similar morphologies which hinders biological, ecological and fishery assessments. I validated the use of cost-effective identification tools using otolith and body morphometry for eleven cryptic teleosts. Inter- and intra-specific partitioning of diet and habitat was identified between the juveniles and adults of cryptic red snappers, using DNA metabarcoding dietary analyses with the custom blocking primers and species distribution modelling
    • …
    corecore