4,692 research outputs found

    AN OPTIMIZATION OF CUSTOMER BANDWIDTH ASSIGNMENT WITH GROUND SEGMENT CONSIDERATION FOR INVESTMENT EFFICIENCY USING GENETIC ALGORITHM

    Get PDF
    Investment of communication satellite consists of two segment, i.e space segment and ground segment. Currently, the investments are not managed efficiently due to lack of strategy in assigning the customer bandwidth. In fact, an optimization of the customer bandwidth assignment can save telecommunication investment resources, especially transponder bandwidth, transponder power, and ground segment. Many works have been performed to optimize both transponder power and transponder bandwidth investment. However, there is no effort has been devoted to optimize ground segment resources. As result, the optimization is not comprehensive. Indeed, identification on the ground segment resource is still performed manually that causes increasing overhed of investments. This study addresses above the issues by proposing new schemes to solve the problems. It introduces a comprehensive method for customer bandwidth assignment and automation of ground segment identification, especially Up Converter and Down Converter. The proposed schemes for customer bandwidth assignment and automation ground segment investment use Genetic Algorithm with modification in objective function. Financial efficient matrix is used for evaluating the performance of the proposed schemes. The experimental result shows that the proposed schemes have a good performance when number of individuals is 1000, number of generation is 10, probability of crossover is 0.8, probability of mutation is 0.5, mutation startegy is using unifrom strategy, and parent selection method is Roulette Wheel. The amount of saving in terms of ground segment investment is over than USD 500,000. It is achieved when all the existing carriers are simultaneously reorganized or migrated from existing satellites to new satellite

    Dynamic approach to solve the daily drayage problem with travel time uncertainty

    Get PDF
    The intermodal transport chain can become more e cient by means of a good organization of drayage movements. Drayage in intermodal container terminals involves the pick up and delivery of containers at customer locations, and the main objective is normally the assignment of transportation tasks to the di erent vehicles, often with the presence of time windows. This scheduling has traditionally been done once a day and, under these conditions, any unexpected event could cause timetable delays. We propose to use the real-time knowledge about vehicle position to solve this problem, which permanently allows the planner to reassign tasks in case the problem conditions change. This exact knowledge of the position of the vehicles is possible using a geographic positioning system by satellite (GPS, Galileo, Glonass), and the results show that this additional data can be used to dynamically improve the solution

    Two-echelon freight transport optimisation: unifying concepts via a systematic review

    Get PDF
    Multi-echelon distribution schemes are one of the most common strategies adopted by the transport companies in an aim of cost reduction, but their identification in scientific literature is not always easy due to a lack of unification. This paper presents the main concepts of two-echelon distribution via a systematic review, in the specific a meta-narrative analysis, in order to identify and unify the main concepts, issues and methods that can be helpful for scientists and transport practitioners. The problem of system cost optimisation in two-echelon freight transport systems is defined. Moreover, the main variants are synthetically presented and discussed. Finally, future research directions are proposed.location-routing problems, multi-echelon distribution, cross-docking, combinatorial optimisation, systematic review.

    Order acceptance and scheduling in a single-machine environment: exact and heuristic algorithms.

    Get PDF
    In this paper, we develop exact and heuristic algorithms for the order acceptance and scheduling problem in a single-machine environment. We consider the case where a pool consisting of firm planned orders as well as potential orders is available from which an over-demanded company can select. The capacity available for processing the accepted orders is limited and orders are characterized by known processing times, delivery dates, revenues and the weight representing a penalty per unit-time delay beyond the delivery date promised to the customer. We prove the non-approximability of the problem and give two linear formulations that we solve with CPLEX. We devise two exact branch-and-bound procedures able to solve problem instances of practical dimensions. For the solution of large instances, we propose six heuristics. We provide a comparison and comments on the efficiency and quality of the results obtained using both the exact and heuristic algorithms, including the solution of the linear formulations using CPLEX.Order acceptance; Scheduling; Single machine; Branch-and-bound; Heuristics; Firm planned orders;

    Satellite downlink scheduling problem: A case study

    Get PDF
    The synthetic aperture radar (SAR) technology enables satellites to efficiently acquire high quality images of the Earth surface. This generates significant communication traffic from the satellite to the ground stations, and, thus, image downlinking often becomes the bottleneck in the efficiency of the whole system. In this paper we address the downlink scheduling problem for Canada's Earth observing SAR satellite, RADARSAT-2. Being an applied problem, downlink scheduling is characterised with a number of constraints that make it difficult not only to optimise the schedule but even to produce a feasible solution. We propose a fast schedule generation procedure that abstracts the problem specific constraints and provides a simple interface to optimisation algorithms. By comparing empirically several standard meta-heuristics applied to the problem, we select the most suitable one and show that it is clearly superior to the approach currently in use.Comment: 23 page

    A evolutionary algorithm for dynamically optimisation of drayage operations

    Get PDF
    Proper planning of drayage operations is fundamental in the quest for the economic viability of intermodal freight transport. The work we present here is a dynamic optimization model which uses real-time knowledge of the fleet's position, permanently enabling the planner to reallocate tasks as the problem conditions change. Stochastic trip times are considered, both in the completion of each task and between tasks

    Dynamic optimisation of urban intermodal freight transport with random transit times, flexible tasks and time windows

    Get PDF
    Es una ponencia de The Sixth International Conference on City Logistics, en Puerto Vallarta, México http://toc.proceedings.com/18996webtoc.pdfAn improvement on drayage operations is necessary for intermodal freight transport to become competitive. When drayage takes place in cities or urban centres transit times are usually random, as a consequence finding the optimal fleet schedule is very difficult, and this schedule can even change during the day. The work we present here is a dynamic optimisation model which uses real-time knowledge of the fleet’s position, permanently enabling the planner to reallocate tasks as the problem conditions change. Stochastic trip times are considered, both in the completion of each task and between tasks. Tasks can also be flexible or well-defined. We describe the algorithm in detail for a test problem and then apply it to a set of random drayage problems of different size and characteristics, obtaining significant cost reductions with respect to initial estimates.Junta de Andalucía SR0197/200

    Two-Echelon Vehicle and UAV Routing for Post-Disaster Humanitarian Operations with Uncertain Demand

    Full text link
    Humanitarian logistics service providers have two major responsibilities immediately after a disaster: locating trapped people and routing aid to them. These difficult operations are further hindered by failures in the transportation and telecommunications networks, which are often rendered unusable by the disaster at hand. In this work, we propose two-echelon vehicle routing frameworks for performing these operations using aerial uncrewed autonomous vehicles (UAVs or drones) to address the issues associated with these failures. In our proposed frameworks, we assume that ground vehicles cannot reach the trapped population directly, but they can only transport drones from a depot to some intermediate locations. The drones launched from these locations serve to both identify demands for medical and other aids (e.g., epi-pens, medical supplies, dry food, water) and make deliveries to satisfy them. Specifically, we present two decision frameworks, in which the resulting optimization problem is formulated as a two-echelon vehicle routing problem. The first framework addresses the problem in two stages: providing telecommunications capabilities in the first stage and satisfying the resulting demands in the second. To that end, two types of drones are considered. Hotspot drones have the capability of providing cell phone and internet reception, and hence are used to capture demands. Delivery drones are subsequently employed to satisfy the observed demand. The second framework, on the other hand, addresses the problem as a stochastic emergency aid delivery problem, which uses a two-stage robust optimization model to handle demand uncertainty. To solve the resulting models, we propose efficient and novel solution approaches
    • …
    corecore