4 research outputs found

    The 0 -1 multiple knapsack problem

    Get PDF
    In operation research, the Multiple Knapsack Problem (MKP) is classified as a combinatorial optimization problem. It is a particular case of the Generalized Assignment Problem. The MKP has been applied to many applications in naval as well as financial management. There are several methods to solve the Knapsack Problem (KP) and Multiple Knapsack Problem (MKP); in particular the Bound and Bound Algorithm (B&B). The bound and bound method is a modification of the Branch and Bound Algorithm which is defined as a particular tree-search technique for the integer linear programming. It has been used to obtain an optimal solution. In this research, we provide a new approach called the Adapted Transportation Algorithm (ATA) to solve the KP and MKP. The solution results of these methods are presented in this thesis. The Adapted Transportation Algorithm is applied to solve the Multiple Knapsack Problem where the unit profit of the items is dependent on the knapsack. In addition, we will show the link between the Multiple Knapsack Problem (MKP) and the multiple Assignment Problem (MAP). These results open a new field of research in order to solve KP and MKP by using the algorithms developed in transportation.Master of Science (MSc) in Computational Scienc

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma
    corecore