18 research outputs found

    RANSAC for Robotic Applications: A Survey

    Get PDF
    Random Sample Consensus, most commonly abbreviated as RANSAC, is a robust estimation method for the parameters of a model contaminated by a sizable percentage of outliers. In its simplest form, the process starts with a sampling of the minimum data needed to perform an estimation, followed by an evaluation of its adequacy, and further repetitions of this process until some stopping criterion is met. Multiple variants have been proposed in which this workflow is modified, typically tweaking one or several of these steps for improvements in computing time or the quality of the estimation of the parameters. RANSAC is widely applied in the field of robotics, for example, for finding geometric shapes (planes, cylinders, spheres, etc.) in cloud points or for estimating the best transformation between different camera views. In this paper, we present a review of the current state of the art of RANSAC family methods with a special interest in applications in robotics.This work has been partially funded by the Basque Government, Spain, under Research Teams Grant number IT1427-22 and under ELKARTEK LANVERSO Grant number KK-2022/00065; the Spanish Ministry of Science (MCIU), the State Research Agency (AEI), the European Regional Development Fund (FEDER), under Grant number PID2021-122402OB-C21 (MCIU/AEI/FEDER, UE); and the Spanish Ministry of Science, Innovation and Universities, under Grant FPU18/04737

    FEATURE MATCHING ENHANCEMENT USING THE GRAPH NEURAL NETWORK (GNN-RANSAC)

    Get PDF
    Improving the performance of feature matching plays a key role in computers vision and photogrammetry applications, such as fast image recognition, Structure from Motion (SFM), aerial triangulation, Visual Simultaneous Localization and Mapping (VSLAM), etc., where the RANSAC algorithm is frequently used for outlier detection; note that RANSAC is the most widely used robust approach in photogrammetry and computer vision for outlier detection. It is known that the outlier ratio used in RANSAC primarily determines the number of trial runs needed, which eventually, determines the computation time. Over time, different methods have been proposed to reject the false-positive correspondences and improve RANSAC, such as GR_RANSAC, SuperGlue, and LPRANSAC. The specific objective of this study is to propose a filtering algorithm based on Graph Neural Networks (GNN), as a pre-processing step before RANSAC, which can result in improvements for rejecting the outliers. The research is based on the idea that descriptors of corresponding points, as well as their spatial relationship, should be similar in image sequences. In graph representation, built by the adjacency matrix of data (nodes features), there should be similarity for corresponding points that are close to each other in the image domain. From the many GNNs techniques, Graph Attention Networks (GATs) were selected for this study as they assign different importance to each neighbour’s contribution as anisotropic operations, so the features of neighbour nodes are not considered in the same way, unlike other GNNs techniques. In our approach, we build a graph in each image, because the similarity of the two-dimensional spatial relationships between points in the image domain of consecutive images should be similar. Then during processing, points with any significantly different neighbours are considered as outliers. Next, the points can be updated in the GNN layer. GNN-RANSAC is tested experimentally on real image pairs. Clearly, the proposed pre-filtering increases the inlier ratio and results in faster convergence compared to ordinary RANSAC, making it attractive for real-time applications. Furthermore, there is no need to learn the features

    Purposive sample consensus: A paradigm for model fitting with application to visual odometry

    Full text link
    © Springer International Publishing Switzerland 2015. ANSAC (random sample consensus) is a robust algorithm for model fitting and outliers' removal, however, it is neither efficient nor reliable enough to meet the requirement of many applications where time and precision is critical. Various algorithms have been developed to improve its performance for model fitting. A new algorithm named PURSAC (purposive sample consensus) is introduced in this paper, which has three major steps to address the limitations of RANSAC and its variants. Firstly, instead of assuming all the samples have a same probability to be inliers, PURSAC seeks their differences and purposively selects sample sets. Secondly, as sampling noise always exists; the selection is also according to the sensitivity analysis of a model against the noise. The final step is to apply a local optimization for further improving its model fitting performance. Tests show that PURSAC can achieve very high model fitting certainty with a small number of iterations. Two cases are investigated for PURSAC implementation. It is applied to line fitting to explain its principles, and then to feature based visual odometry, which requires efficient, robust and precise model fitting. Experimental results demonstrate that PURSAC improves the accuracy and efficiency of fundamental matrix estimation dramatically, resulting in a precise and fast visual odometry

    Improving RANSAC for Efficient and Precise Model Fitting with Statistical Analysis

    Full text link
    RANSAC (random sample consensus) has been widely used as a benchmark algorithm for model fitting in the presence of outliers for more than thirty years. It is robust for outlier removal and rough model fitting, but neither reliable nor efficient enough for many applications where precision and time is critical. Many other algorithms have been proposed for the improvement of RANSAC. However, no much effort has been done to systematically tackle its limitations on model fitting repeatability, quality indication, iteration termination, and multi-model fitting.A new paradigm, named as SASAC (statistical analysis for sample consensus), is introduced in this paper to relinquish the limitations of RANSAC above. Unlike RANSAC that does not consider sampling noise, which is true in most sampling cases, a term named as ? rate is defined in SASAC. It is used both as an indicator for the quality of model fitting and as a criterion for terminating iterative model searching. Iterative least square is advisably integrated in SASAC for optimal model estimation, and a strategy is proposed to handle a multi-model situation.Experiment results for linear and quadratic function model fitting demonstrate that SASAC can significantly improve the quality and reliability of model fitting and largely reduce the number of iterations for model searching. Using the ? rate as an indicator for the quality of model fitting can effectively avoid wrongly estimated model. In addition, SASAC works very well to a multi-model dataset and can provide reliable estimations to all the models. SASAC can be combined with RANSAC and its variants to dramatically improve their performance.</jats:p

    noRANSAC for fundamental matrix estimation

    Get PDF
    The estimation of the fundamental matrix from a set of corresponding points is a relevant topic in epipolar stereo geometry [10]. Due to the high amount of outliers between the matches, RANSAC-based approaches [7, 13, 29] have been used to obtain the fundamental matrix. In this paper two new contributes are presented: a new normalized epipolar error measure which takes into account the shape of the features used as matches [17] and a new strategy to compare fundamental matrices. The proposed error measure gives good results and it does not depend on the image scale. Moreover, the new evaluation strategy describes a valid tool to compare different RANSAC-based methods because it does not rely on the inlier ratio, which could not correspond to the best allowable fundamental matrix estimated model, but it makes use of a reference ground truth fundamental matrix obtained by a set of corresponding points given by the use

    GroupSAC: Efficient Consensus in the Presence of Groupings

    Get PDF
    ©2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 2009 12th IEEE International Conference on Computer Vision (ICCV), 29 September-2 October 2009, Kyoto, Japan.DOI: 10.1109/ICCV.2009.5459241We present a novel variant of the RANSAC algorithm that is much more efficient, in particular when dealing with problems with low inlier ratios. Our algorithm assumes that there exists some grouping in the data, based on which we introduce a new binomial mixture model rather than the simple binomial model as used in RANSAC. We prove that in the new model it is more efficient to sample data from a smaller numbers of groups and groups with more tentative correspondences, which leads to a new sampling procedure that uses progressive numbers of groups. We demonstrate our algorithm on two classical geometric vision problems: wide-baseline matching and camera resectioning. The experiments show that the algorithm serves as a general framework that works well with three possible grouping strategies investigated in this paper, including a novel optical flow based clustering approach. The results show that our algorithm is able to achieve a significant performance gain compared to the standard RANSAC and PROSAC

    A Novel Improved Probability-Guided RANSAC Algorithm for Robot 3D Map Building

    Get PDF
    This paper presents a novel improved RANSAC algorithm based on probability and DS evidence theory to deal with the robust pose estimation in robot 3D map building. In this proposed RANSAC algorithm, a parameter model is estimated by using a random sampling test set. Based on this estimated model, all points are tested to evaluate the fitness of current parameter model and their probabilities are updated by using a total probability formula during the iterations. The maximum size of inlier set containing the test point is taken into account to get a more reliable evaluation for test points by using DS evidence theory. Furthermore, the theories of forgetting are utilized to filter out the unstable inliers and improve the stability of the proposed algorithm. In order to boost a high performance, an inverse mapping sampling strategy is adopted based on the updated probabilities of points. Both the simulations and real experimental results demonstrate the feasibility and effectiveness of the proposed algorithm

    On the sample consensus robust estimation paradigm: comprehensive survey and novel algorithms with applications.

    Get PDF
    Master of Science in Statistics and Computer Science.University of KwaZulu-Natal, Durban 2016.This study begins with a comprehensive survey of existing variants of the Random Sample Consensus (RANSAC) algorithm. Then, five new ones are contributed. RANSAC, arguably the most popular robust estimation algorithm in computer vision, has limitations in accuracy, efficiency and repeatability. Research into techniques for overcoming these drawbacks, has been active for about two decades. In the last one-and-half decade, nearly every single year had at least one variant published: more than ten, in the last two years. However, many existing variants compromise two attractive properties of the original RANSAC: simplicity and generality. Some introduce new operations, resulting in loss of simplicity, while many of those that do not introduce new operations, require problem-specific priors. In this way, they trade off generality and introduce some complexity, as well as dependence on other steps of the workflow of applications. Noting that these observations may explain the persisting trend, of finding only the older, simpler variants in ‘mainstream’ computer vision software libraries, this work adopts an approach that preserves the two mentioned properties. Modification of the original algorithm, is restricted to only search strategy replacement, since many drawbacks of RANSAC are consequences of the search strategy it adopts. A second constraint, serving the purpose of preserving generality, is that this ‘ideal’ strategy, must require no problem-specific priors. Such a strategy is developed, and reported in this dissertation. Another limitation, yet to be overcome in literature, but is successfully addressed in this study, is the inherent variability, in RANSAC. A few theoretical discoveries are presented, providing insights on the generic robust estimation problem. Notably, a theorem proposed as an original contribution of this research, reveals insights, that are foundational to newly proposed algorithms. Experiments on both generic and computer-vision-specific data, show that all proposed algorithms, are generally more accurate and more consistent, than RANSAC. Moreover, they are simpler in the sense that, they do not require some of the input parameters of RANSAC. Interestingly, although non-exhaustive in search like the typical RANSAC-like algorithms, three of these new algorithms, exhibit absolute non-randomness, a property that is not claimed by any existing variant. One of the proposed algorithms, is fully automatic, eliminating all requirements of user-supplied input parameters. Two of the proposed algorithms, are implemented as contributed alternatives to the homography estimation function, provided in MATLAB’s computer vision toolbox, after being shown to improve on the performance of M-estimator Sample Consensus (MSAC). MSAC has been the choice in all releases of the toolbox, including the latest 2015b. While this research is motivated by computer vision applications, the proposed algorithms, being generic, can be applied to any model-fitting problem from other scientific fields
    corecore