2,438 research outputs found

    Self-tuning run-time reconfigurable PID controller

    Get PDF
    Digital PID control algorithm is one of the most commonly used algorithms in the control systems area. This algorithm is very well known, it is simple, easily implementable in the computer control systems and most of all its operation is very predictable. Thus PID control has got well known impact on the control system behavior. However, in its simple form the controller have no reconfiguration support. In a case of the controlled system substantial changes (or the whole control environment, in the wider aspect, for example if the disturbances characteristics would change) it is not possible to make the PID controller robust enough. In this paper a new structure of digital PID controller is proposed, where the policy-based computing is used to equip the controller with the ability to adjust it's behavior according to the environmental changes. Application to the electro-oil evaporator which is a part of distillation installation is used to show the new controller structure in operation

    A novel technique for load frequency control of multi-area power systems

    Get PDF
    In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability

    Design an intelligent controller for full vehicle nonlinear active suspension systems

    Get PDF
    The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order (FOPID) controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Design of Intelligent PID Controller for AVR System Using an Adaptive Neuro Fuzzy Inference System

    Get PDF
    This paper presents a hybrid approach involving signal to noise ratio (SNR) and particle swarm optimization (PSO) for design the optimal and intelligent proportional-integral-derivative (PID) controller of an automatic voltage regulator (AVR) system with uses an adaptive neuro fuzzy inference system (ANFIS). In this paper determined optimal parameters of PID controller with SNR-PSO approach for some events and use these optimal parameters of PID controller for design the intelligent PID controller for AVR system with ANFIS.  Trial and error method can be used to find a suitable design of anfis based an intelligent controller. However, there are many options including fuzzy rules, Membership Functions (MFs) and scaling factors to achieve a desired performance. An optimization algorithm facilitates this process and finds an optimal design to provide a desired performance. This paper presents a novel application of the SNRPSO approach to design an intelligent controller for AVR. SNR-PSO is a method that combines the features of PSO and SNR in order to improve the optimize operation. In order to emphasize the advantages of the proposed SNR-PSO PID controller, we also compared with the CRPSO PID controller. The proposed method was indeed more efficient and robust in improving the step response of an AVR system and numerical simulations are provided to verify the effectiveness and feasibility of PID controller of AVR based on SNRPSO algorithm.DOI:http://dx.doi.org/10.11591/ijece.v4i5.652

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    State of the art of control schemes for smart systems featuring magneto-rheological materials

    Get PDF
    This review presents various control strategies for application systems utilizing smart magneto-rheological fluid (MRF) and magneto-rheological elastomers (MRE). It is well known that both MRF and MRE are actively studied and applied to many practical systems such as vehicle dampers. The mandatory requirements for successful applications of MRF and MRE include several factors: advanced material properties, optimal mechanisms, suitable modeling, and appropriate control schemes. Among these requirements, the use of an appropriate control scheme is a crucial factor since it is the final action stage of the application systems to achieve the desired output responses. There are numerous different control strategies which have been applied to many different application systems of MRF and MRE, summarized in this review. In the literature review, advantages and disadvantages of each control scheme are discussed so that potential researchers can develop more effective strategies to achieve higher control performance of many application systems utilizing magneto-rheological materials

    Study on the Extent of the Impact of Data Set Type on the Performance of ANFIS for Controlling the Speed of DC Motor

    Get PDF
    This paper introduces an adaptive neuro-fuzzy inference system (ANFIS) for tracking SEDC motor speed in order to optimize the parameters of the transient speed response by finding out the perfect training data provider for the ANFIS. The controller was adjusted using PI, PD and PIPD to generate data sets to configure the ANFIS rules. The performance of the ANFIS controllers using these the different data sets was investigated. The efficiencies of the three controllers were compared to each other, where the PI, PD, and PIPD configurations were replaced by ANFIS to enhance the dynamic action of the controller. The performance of the proposed configurations was tested under different operating situations. Matlab's Simulink toolbox was used to implement the designed controllers. The resultant responses proved that the ANFIS based on the PIPD dataset performed better than the ANFIS based on the PI and PD data sets. Moreover, the suggested controller showed a rapid dynamic response and delivered better performance under various operating conditions

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    Literature Review of PID Controller based on Various Soft Computing Techniques

    Get PDF
    This paper profound the various soft computing techniques like fuzzy logic, genetic algorithm, ant colony optimization, particle swarm optimization used in controlling the parameters of PID Controller. Its widespread use and universal acceptability is allocated to its elementary operating algorithm, the relative ease with the controller effects can be adjusted, the broad range of applications where it has truly developed excellent control performances, and the familiarity with which it is deduced among researchers. In spite of its wide spread use, one of its short-comings is that there is no efficient tuning method for PID controller. Given this background, the main objective of this is to develop a tuning methodology that would be universally applicable to a range of well-liked process that occurs in the process control industry
    • …
    corecore