121 research outputs found

    Non-Guard Interval based and Genetic Algorithm Assisted Frequency Domain Equalization for DS-UWB Systems

    Get PDF
    In this work, a genetic algorithm (GA) based frequency domain equalization (FDE-GA) scheme was proposed for direct sequence ultra wideband (DS-UWB) wireless communication systems. The proposed FDE-GA scheme does not require a guard interval (GI) and the output of the RAKE receiver is used as the input to our GA. The scheme achieved much higher bandwidth efficiency than conventional FDE methods because of the removal of the inter block interference (IBI) within each block before the GA. The FDE-GA receiver was shown to significantly outperform the RAKE receiver and the RAKE-GA receiver proposed in a previous work, in terms of bit error rate (BER) at a similar complexity. An improvement in the mean square error (MSE) was observed from simulation results presented, as a result of increase in the number of pilot symbols.Keywords: frequency domain equalization, guard interval, ultra-wideband, genetic algorithm, inter block-interferenc

    Bit-error-rate Optimization for CDMA Ultra-wideband System Using Generalized Gaussian Approach

    Get PDF
    Ultra-wideband is a wireless technology arisen for future high speed multimedia applications. It can provide data rate in excess of Gigabits per second by transmitting impulse signal through the free space. However, the ultra-wideband indoor channel models proposed by the IEEE P802.15.3a suffer long multipath propagation. Due to this multipath effect, several studies have been done to improve the bit-error-rate performance of the ultra-wideband system in the existence of severe interference. Yet, most of the proposed algorithms were formulated based on the Gaussian distribution, which is not true in ultra-wideband. In this paper, we first analyze the statistical behavior of the CDMA-UWB signal by applying the Kullback-Leibler divergence index. Based on the analysis, a non-Gaussian equalizer is developed by deriving an enhanced bit-error-rate optimization algorithm using the Generalized Gaussian approach. The proposed equalizer has been shown to achieve a performance gain of at least 1.5dB to 2dB over the other equalizers simulated under IEEE P802.15.3a channel models

    Adaptive Equalization for UWB communication System based on ANFIS

    Get PDF
    Ultra-wideband (UWB) communication systems cover enormous bandwidths that have strongly low-power spectral densities. At UWB communication system with high data rate, owing to multipath propagation, the spread delay in inter symbol interference (ISI) will raise the bit error rate (BER) considerably. ISI which is formed via the UWB channels can be removed by equalization, which is one of the most significant signal processing techniques. Furthermore, LMS algorithm represents a very efficient tool for determining adaptive equalizer coefficients values in communication systems, in spite of that, the LMS adaptive equalizer encounters response diminishing besides slow convergence rate. The current paper adopts an adaptive equalizer based adaptive neuron-fuzzy inference system (ANFIS). The simulation outcomes reveal that the convergence rates as well as accuracy of identification of ANFIS based algorithm are surpass the traditional LMS algorithm, moreover, simulation outcomes prove that ISI is effectively limited and the performance of the system is clearly improved.                                          &nbsp

    Performance Evaluation of Adaptive Continuous Wavelet Transform based Rake Receiver for UWB Systems

    Get PDF
    This paper proposes an adaptive continuous wavelet transform (ACWT) based Rake receiver to mitigate interference for high speed ultra wideband (UWB) transmission. The major parts of the receiver are least mean square (LMS) adaptive equalizer and N-selective maximum ratio combiner (MRC). The main advantage of using continuous wavelet rake receiver is that it utilizes the maximum bandwidth (7.5GHz) of the UWB transmitted signal, as announced by the Federal Communication Commission (FCC). In the proposed ACWT Rake receiver, the weights and the finger positions are updated depending upon the convergence error over a period in which training data is transmitted. Line of sight (LOS) channel model (CM1 from 0 to 4 meters) and the Non line of sight (NLOS) channel models (CM, CM3 and CM4) are the indoor channel models selected for investigating in this research . The performance of the proposed adaptive system   is evaluated by comparing with conventional rake and continuous wavelet transform (CWT) based rake. It showed an improved performance in all the different UWB channels (CM1 to CM4) for rake fingers of 2, 4 and 8. Simulations showed that for 8 rake fingers, the proposed adaptive CWT rake receiver has shown an SNR improvement of 2dB, 3dB, 10dB and 2dB respectively over CWT rake receiver in different UWB channels CM1, CM2, CM3 and CM4

    Ultra-wideband indoor communications using optical technology

    Get PDF
    La communication ultra large bande (UWB) a attiré une énorme quantité de recherches ces dernières années, surtout après la présentation du masque spectral de US Federal Communications Commission (FCC). Les impulsions ultra-courtes permettent de très hauts débits de faible puissance tout en éliminant les interférences avec les systèmes existants à bande étroite. La faible puissance, cependant, limite la portée de propagation des radios UWB à quelques mètres pour la transmission sans fil à l’intérieur d’une pièce. En outre, des signaux UWB reçu sont étendus dans le temps en raison de la propagation par trajet multiple qui résulte en beaucoup d’interférence inter-symbole (ISI) à haut débit. Le monocycle Gaussien, l’impulsion la plus commune dans UWB, a une mauvaise couverture sous le masque de la FCC. Dans cette thèse, nous démontrons des transmet- teurs qui sont capables de générer des impulsions UWB avec une efficacité de puissance élevée. Une impulsion efficace résulte dans un rapport de signal à bruit (SNR) supérieur au récepteur en utilisant plus de la puissance disponible sous le masque spectral de la FCC. On produit les impulsions dans le domaine optique et utilise la fibre optique pour les transporter sur plusieurs kilomètres pour la distribution dans un réseau optique pas- sif. La fibre optique est très fiable pour le transport des signaux radio avec une faible consommation de puissance. On utilise les éléments simples comme un modulateur Mach-Zehnder ou un résonateur en anneau pour générer des impulsions, ce qui permet l’intégration dans le silicium. Compatible avec la technologie CMOS, la photonique sur silicium a un potentiel énorme pour abaisser le coût et l’encombrement des systèmes optiques. La photodétection convertit les impulsions optiques en impulsions électriques avant la transmission sur l’antenne du côté de l’utilisateur. La réponse fréquentielle de l’antenne déforme la forme d’onde de l’impulsion UWB. Nous proposons une technique d’optimisation non-linéaire qui prend en compte la distorsion d’antenne pour trouver des impulsions qui maximisent la puissance transmise, en respectant le masque spectral de la FCC. Nous travaillons avec trois antennes et concevons une impulsion unique pour chacune d’entre elle. L’amélioration de l’énergie des impulsions UWB améliore directement la SNR au récepteur. Les résultats de simulation montrent que les impulsions optimisées améliorent considérablement le taux d’erreur (BER) par rapport au monocycle Gaussien sous propagation par trajet multiple. Notre autre contribution est l’évaluation d’un filtre adapté pour recevoir efficacement des impulsions UWB. Le filtre adapté est synthétisé et fabriqué en technologie microstrip, en collaboration avec l’Université McGill comme un dispositif de bande interdite électromagnétique. La réponse fréquentielle du filtre adapté montre une ex- cellente concordance avec le spectre ciblé de l’impulsion UWB. Les mesures de BER confirment la performance supérieure du filtre adapté par rapport à un récepteur à conversion directe. Le canal UWB est très riche en trajet multiple conduisant à l’ISI à haut débit. Notre dernière contribution est l’étude de performance des récepteurs en simulant un système avec des conditions de canaux réalistes. Les résultats de la simulation montrent que la performance d’un tel système se dégrade de façon significative pour les hauts débits. Afin de compenser la forte ISI dans les taux de transfert de données en Gb/s, nous étudions l’algorithme de Viterbi (VA) avec un nombre limité d’états et un égaliseur DFE (decision feedback equalizer). Nous examinons le nombre d’états requis dans le VA, et le nombre de coefficients du filtre dans le DFE pour une transmission fiable de UWB en Gb/s dans les canaux en ligne de vue. L’évaluation par simulation de BER confirme que l’égalisation améliore considérablement les performances par rapport à la détection de symbole. La DFE a une meilleure performance par rapport à la VA en utilisant une complexité comparable. La DFE peut couvrir une plus grande mémoire de canal avec un niveau de complexité relativement réduit.Ultra-wideband (UWB) communication has attracted an enormous amount of research in recent years, especially after the introduction of the US Federal Communications Commission (FCC) spectral mask. Ultra-short pulses allow for very high bit-rates while low power eliminates interference with existing narrowband systems. Low power, however, limits the propagation range of UWB radios to a few meters for indoors wireless transmission. Furthermore, received UWB signals are spread in time because of multipath propagation which results in high intersymbol interference at high data rates. Gaussian monocycle, the most commonly employed UWB pulse, has poor coverage under the FCC mask. In this thesis we demonstrate transmitters capable of generating UWB pulses with high power efficiency at Gb/s bit-rates. An efficient pulse results in higher signal-to-noise ratio (SNR) at the receiver by utilizing most of the available power under the FCC spectral mask. We generate the pulses in the optical domain and use optical fiber to transport the pulses over several kilometers for distribution in a passive optical network. Optical fiber is very reliable for transporting radio signals with low power consumption. We use simple elements such as a Mach Zehnder modulator or a ring resonator for pulse shaping, allowing for integration in silicon. Being compatible with CMOS technology, silicon photonics has huge potential for lowering the cost and bulkiness of optical systems. Photodetection converts the pulses to the electrical domain before antenna transmission at the user side. The frequency response of UWB antennas distorts the UWB waveforms. We pro- pose a nonlinear optimization technique which takes into account antenna distortion to find pulses that maximize the transmitted power, while respecting the FCC spectral mask. We consider three antennas and design a unique pulse for each. The energy improvement in UWB pulses directly improves the receiver SNR. Simulation results show that optimized pulses have a significant bit error rate (BER) performance improvement compared to the Gaussian monocycle under multipath propagation. Our other contribution is evaluating a matched filter to receive efficiently designed UWB pulses. The matched filter is synthesized and fabricated in microstrip technology in collaboration with McGill University as an electromagnetic bandgap device. The frequency response of the matched filter shows close agreement with the target UWB pulse spectrum. BER measurements confirm superior performance of the matched filter compared to a direct conversion receiver. The UWB channel is very rich in multipath leading to ISI at high bit rates. Our last contribution is investigating the performance of receivers by simulating a system employing realistic channel conditions. Simulation results show that the performance of such system degrades significantly for high data rates. To compensate the severe ISI at gigabit rates, we investigate the Viterbi algorithm (VA) with a limited number of states and the decision feedback equalizer (DFE). We examine the required number of states in the VA, and the number of taps in the DFE for reliable Gb/s UWB trans- mission for line-of-sight channels. Non-line-of-sight channels were also investigated at lower speeds. BER simulations confirm that equalization considerably improves the performance compared to symbol detection. The DFE results in better performance compared to the VA when using comparable complexity as the DFE can cover greater channel memory with a relatively low complexity level

    Bit-Error-Rate-Minimizing Channel Shortening Using Post-FEQ Diversity Combining and a Genetic Algorithm

    Get PDF
    In advanced wireline or wireless communication systems, i.e., DSL, IEEE 802.11a/g, HIPERLAN/2, etc., a cyclic prefix which is proportional to the channel impulse response is needed to append a multicarrier modulation (MCM) frame for operating the MCM accurately. This prefix is used to combat inter symbol interference (ISI). In some cases, the channel impulse response can be longer than the cyclic prefix (CP). One of the most useful techniques to mitigate this problem is reuse of a Channel Shortening Equalizer (CSE) as a linear preprocessor before the MCM receiver in order to shorten the effective channel length. Channel shortening filter design is a widely examined topic in the literature. Most channel shortening equalizer proposals depend on perfect channel state information (CSI). However, this information may not be available in all situations. In cases where channel state information is not needed, blind adaptive equalization techniques are appropriate. In wireline communication systems (such as DMT), the CSE design is based on maximizing the bit rate, but in wireless systems (OFDM), there is a fixed bit loading algorithm, and the performance metric is Bit Error Rate (BER) minimization. In this work, a CSE is developed for multicarrier and single-carrier cyclic prefixed (SCCP) systems which attempts to minimize the BER. To minimize the BER, a Genetic Algorithm (GA), which is an optimization method based on the principles of natural selection and genetics, is used. If the CSI is shorter than the CP, the equalization can be done by a frequency domain equalizer (FEQ), which is a bank of complex scalars. However, in the literature the adaptive FEQ design has not been well examined. The second phase of this thesis focuses on different types of algorithms for adapting the FEQ and modifying the FEQ architecture to obtain a lower BER. Simulation results show that this modified architecture yields a 20 dB improvement in BER

    Broadband Impedance Matching of Antenna Radiators

    Get PDF
    In the design of any antenna radiator, single or multi-element, a significant amount of time and resources is spent on impedance matching. There are broadly two approaches to impedance matching; the first is the distributed impedance matching approach which leads to modifying the antenna geometry itself by identifying appropriate degrees of freedom within the structure. The second option is the lumped element approach to impedance matching. In this approach instead of modifying the antenna geometry a passive network attempts to equalize the impedance mismatch between the source and the antenna load. This thesis introduces a new technique of impedance matching using lumped circuits (passive, lossless) for electrically small (short) non-resonant dipole/monopole antennas. A closed form upper-bound on the achievable transducer gain (and therefore the reflection coefficient) is derived starting with the Bode-Fano criterion. A 5 element equalizer is proposed which can equalize all dipole/monopole like antennas. Simulation and experimental results confirm our hypothesis. The second contribution of this thesis is in the design of broadband, small size, modular arrays (2, 4, 8 or 16 elements) using the distributed approach to impedance matching. The design of arrays comprising a small number of elements cannot follow the infinite array design paradigm. Instead, the central idea is to find a single optimized radiator (unit cell) which if used to build the 2x1, 4x1, 2x2 arrays, etc. (up to a 4x4 array) will provide at least the 2:1 bandwidth with a VSWR of 2:1 and stable directive gain (not greater than 3 dB variation) in each configuration. Simulation and experimental results for a solution to the 2x1, 4x1 and 2x2 array configurations is presented
    • …
    corecore