3,724 research outputs found

    Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods

    Full text link
    [EN] This paper presents an efficient algorithm for the reconfiguration of a parallel kinematic manipulator with four degrees of freedom. The reconfiguration of the parallel manipulator is posed as a nonlinear optimization problem where the design variables correspond to the anchoring points of the limbs of the robot on the fixed platform. The penalty function minimizes the forces applied by the actuators during a specific trajectory. Some constraints are imposed to avoid forward singularities and guarantee the feasibility of the active generalized coordinates for a certain trajectory. The results are compared with different optimization approaches with the aim of avoiding getting trapped into a local minimum and undergoing forward singularities. The comparison covers evolutionary algorithms, heuristics optimizers, multistrategy algorithms, and gradient-based optimizers. The proposed methodology has been successfully tested on an actual parallel robot for different trajectories.This research was funded by the Spanish Ministry of Education, Culture and Sports, grant number DPI2017-84201-R.Llopis-Albert, C.; Valero Chuliá, FJ.; Mata Amela, V.; Pulloquinga-Zapata, J.; Zamora-Ortiz, P.; Escarabajal-Sánchez, RJ. (2020). Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods. Sustainability. 12(14):1-18. https://doi.org/10.3390/su12145803S1181214Rubio, F., Valero, F., & Llopis-Albert, C. (2019). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 172988141983959. doi:10.1177/1729881419839596Jamwal, P. K., Xie, S. Q., Hussain, S., & Parsons, J. G. (2014). An Adaptive Wearable Parallel Robot for the Treatment of Ankle Injuries. IEEE/ASME Transactions on Mechatronics, 19(1), 64-75. doi:10.1109/tmech.2012.2219065Niu, X., Yang, C., Tian, B., Li, X., & Han, J. (2019). Modal Decoupled Dynamics Feed-Forward Active Force Control of Spatial Multi-DOF Parallel Robotic Manipulator. Mathematical Problems in Engineering, 2019, 1-13. doi:10.1155/2019/1835308Chablat, D., Kong, X., & Zhang, C. (2018). Kinematics, Workspace, and Singularity Analysis of a Parallel Robot With Five Operation Modes. Journal of Mechanisms and Robotics, 10(3). doi:10.1115/1.4039400Gao, Z., & Zhang, D. (2011). Workspace Representation and Optimization of a Novel Parallel Mechanism with Three-Degrees-of-Freedom. Sustainability, 3(11), 2217-2228. doi:10.3390/su3112217Hu, B., Shi, D., Xie, T., Hu, B., & Ye, N. (2020). Kinematically identical manipulators derivation for the 2-RPU+UPR parallel manipulator and their constraint performance comparison. Journal of Mechanisms and Robotics, 1-13. doi:10.1115/1.4047540Schappler, M., Tappe, S., & Ortmaier, T. (2019). Modeling Parallel Robot Kinematics for 3T2R and 3T3R Tasks Using Reciprocal Sets of Euler Angles. Robotics, 8(3), 68. doi:10.3390/robotics8030068Chen, Z., Xu, L., Zhang, W., & Li, Q. (2019). Closed-form dynamic modeling and performance analysis of an over-constrained 2PUR-PSR parallel manipulator with parasitic motions. Nonlinear Dynamics, 96(1), 517-534. doi:10.1007/s11071-019-04803-2Zhang, D., & Wei, B. (2017). Interactions and Optimizations Analysis between Stiffness and Workspace of 3-UPU Robotic Mechanism. Measurement Science Review, 17(2), 83-92. doi:10.1515/msr-2017-0011Wu, G., & Zou, P. (2016). Comparison of 3-DOF asymmetrical spherical parallel manipulators with respect to motion/force transmission and stiffness. Mechanism and Machine Theory, 105, 369-387. doi:10.1016/j.mechmachtheory.2016.07.017Meng, W., Xie, S. Q., Liu, Q., Lu, C. Z., & Ai, Q. (2017). Robust Iterative Feedback Tuning Control of a Compliant Rehabilitation Robot for Repetitive Ankle Training. IEEE/ASME Transactions on Mechatronics, 22(1), 173-184. doi:10.1109/tmech.2016.2618771Yang, Z., & Zhang, D. (2019). ENERGY OPTIMAL ADAPTION AND MOTION PLANNING OF A 3-RRS BALANCED MANIPULATOR. International Journal of Robotics and Automation, 34(5). doi:10.2316/j.2019.206-0171Zhang, D., & Gao, Z. (2012). Optimal Kinematic Calibration of Parallel Manipulators With Pseudoerror Theory and Cooperative Coevolutionary Network. IEEE Transactions on Industrial Electronics, 59(8), 3221-3231. doi:10.1109/tie.2011.2166229Lou, Y., Zhang, Y., Huang, R., Chen, X., & Li, Z. (2014). Optimization Algorithms for Kinematically Optimal Design of Parallel Manipulators. IEEE Transactions on Automation Science and Engineering, 11(2), 574-584. doi:10.1109/tase.2013.2259817Dumlu, A., & Erenturk, K. (2014). Trajectory Tracking Control for a 3-DOF Parallel Manipulator Using Fractional-Order PIλDμ\hbox{PI}^{\lambda}\hbox{D}^{\mu} Control. IEEE Transactions on Industrial Electronics, 61(7), 3417-3426. doi:10.1109/tie.2013.2278964Llopis-Albert, C., Rubio, F., & Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1. doi:10.4995/muse.2018.9867Gosselin, C., & Angeles, J. (1990). Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation, 6(3), 281-290. doi:10.1109/70.56660Briot, S., Arakelian, V., Bonev, I. A., Chablat, D., & Wenger, P. (2008). Self-Motions of General 3-RPR Planar Parallel Robots. The International Journal of Robotics Research, 27(7), 855-866. doi:10.1177/0278364908092466Karimi, A., Masouleh, M. T., & Cardou, P. (2016). Avoiding the singularities of 3-RPR parallel mechanisms via dimensional synthesis and self-reconfigurability. Mechanism and Machine Theory, 99, 189-206. doi:10.1016/j.mechmachtheory.2016.01.006Patel, Y. D., & George, P. M. (2012). Parallel Manipulators Applications—A Survey. Modern Mechanical Engineering, 02(03), 57-64. doi:10.4236/mme.2012.23008Araujo-Gómez, P., Díaz-Rodríguez, M., Mata, V., & González-Estrada, O. A. (2019). Kinematic analysis and dimensional optimization of a 2R2T parallel manipulator. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(10). doi:10.1007/s40430-019-1934-1Araujo-Gómez, P., Mata, V., Díaz-Rodríguez, M., Valera, A., & Page, A. (2017). Design and Kinematic Analysis of a Novel 3UPS/RPU Parallel Kinematic Mechanism With 2T2R Motion for Knee Diagnosis and Rehabilitation Tasks. Journal of Mechanisms and Robotics, 9(6). doi:10.1115/1.4037800Vallés, M., Araujo-Gómez, P., Mata, V., Valera, A., Díaz-Rodríguez, M., Page, Á., & Farhat, N. M. (2017). Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator. Mechanics Based Design of Structures and Machines, 46(4), 425-439. doi:10.1080/15397734.2017.1355249Koziel, S., & Yang, X.-S. (Eds.). (2011). Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence. doi:10.1007/978-3-642-20859-1Beiranvand, V., Hare, W., & Lucet, Y. (2017). Best practices for comparing optimization algorithms. Optimization and Engineering, 18(4), 815-848. doi:10.1007/s11081-017-9366-1Page, A., De Rosario, H., Mata, V., Hoyos, J. V., & Porcar, R. (2006). Effect of marker cluster design on the accuracy of human movement analysis using stereophotogrammetry. Medical and Biological Engineering and Computing, 44(12), 1113-1119. doi:10.1007/s11517-006-0124-3Arora, J. S., Chahande, A. I., & Paeng, J. K. (1991). Multiplier methods for engineering optimization. International Journal for Numerical Methods in Engineering, 32(7), 1485-1525. doi:10.1002/nme.1620320706Modefrontier Toolhttps://www.esteco.com.202

    Computational neurorehabilitation: modeling plasticity and learning to predict recovery

    Get PDF
    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling – regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    Optimal Schedules in Multitask Motor Learning

    Get PDF
    Although scheduling multiple tasks in motor learning to maximize long-term retention of performance is of great practical importance in sports training and motor rehabilitation after brain injury, it is unclear how to do so. We propose here a novel theoretical approach that uses optimal control theory and computational models of motor adaptation to determine schedules that maximize long-term retention predictively. Using Pontryagin’s maximum principle, we derived a control law that determines the trial-by-trial task choice that maximizes overall delayed retention for all tasks, as predicted by the state-space model. Simulations of a single session of adaptation with two tasks show that when task interference is high, there exists a threshold in relative task difficulty below which the alternating schedule is optimal. Only for large differences in task difficulties do optimal schedules assign more trials to the harder task. However, over the parameter range tested, alternating schedules yield long-term retention performance that is only slightly inferior to performance given by the true optimal schedules. Our results thus predict that in a large number of learning situations wherein tasks interfere, intermixing tasks with an equal number of trials is an effective strategy in enhancing long-term retention

    Heuristic Optimization Algorithms in Robotics

    Get PDF
    corecore