5,547 research outputs found

    Genetic of radiation-induced toxicities in cancer patients

    Get PDF
    Cancer remains a leading cause of death globally, and radiotherapy has contributed significantly to improvements in the treatment of cancer patients. However, not every cancer responds to radiotherapy in the same way. Despite applying uniform treatment protocols for radiotherapy to minimize damage to the surrounding healthy tissue, a large patient-to-patient variability exists in radiation-induced toxicities. Many cancer patients achieve survivorship at the cost of treatment complications occurring in normal tissues. However, the solution is not to eliminate radiation exposure but to protect individuals who are the most sensitive to radiation and minimize dose and exposure to all individuals.In this thesis, I focused on uncovering the underlying genetic causes of individual variation in sensitivity to radiation in cancer patients. I applied various genetic epidemiological designs, methods, and concepts in a range of studies to identify genetic variants associated with radiation-induced toxicities in cancer patients. Eventually, this thesis identified several genomic regions associated with radiation-induced toxicities. In addition, the thesis showed for the first time, radiation-induced toxicities are mostly heritable and predictable by genetic profiles of cancer patients. The identified predictors aim to contribute to an algorithm to improve the guidelines of therapeutic decisions. Patients at high risk of developing radiation-induced toxicities may be offered an alternative treatment approach, or, for patients who have received radiotherapy, advanced planning corrections can be introduced to better-individualized radiotherapy treatment. In addition to predictive and prognostic testing, the products of the identified genes could become targets for innovative therapies in susceptible individuals

    Beam Orientation Optimization for Intensity Modulated Radiation Therapy using Adaptive l1 Minimization

    Full text link
    Beam orientation optimization (BOO) is a key component in the process of IMRT treatment planning. It determines to what degree one can achieve a good treatment plan quality in the subsequent plan optimization process. In this paper, we have developed a BOO algorithm via adaptive l_1 minimization. Specifically, we introduce a sparsity energy function term into our model which contains weighting factors for each beam angle adaptively adjusted during the optimization process. Such an energy term favors small number of beam angles. By optimizing a total energy function containing a dosimetric term and the sparsity term, we are able to identify the unimportant beam angles and gradually remove them without largely sacrificing the dosimetric objective. In one typical prostate case, the convergence property of our algorithm, as well as the how the beam angles are selected during the optimization process, is demonstrated. Fluence map optimization (FMO) is then performed based on the optimized beam angles. The resulted plan quality is presented and found to be better than that obtained from unoptimized (equiangular) beam orientations. We have further systematically validated our algorithm in the contexts of 5-9 coplanar beams for 5 prostate cases and 1 head and neck case. For each case, the final FMO objective function value is used to compare the optimized beam orientations and the equiangular ones. It is found that, our BOO algorithm can lead to beam configurations which attain lower FMO objective function values than corresponding equiangular cases, indicating the effectiveness of our BOO algorithm.Comment: 19 pages, 2 tables, and 5 figure

    A Hierachical Evolutionary Algorithm for Multiobjective Optimization in IMRT

    Full text link
    Purpose: Current inverse planning methods for IMRT are limited because they are not designed to explore the trade-offs between the competing objectives between the tumor and normal tissues. Our goal was to develop an efficient multiobjective optimization algorithm that was flexible enough to handle any form of objective function and that resulted in a set of Pareto optimal plans. Methods: We developed a hierarchical evolutionary multiobjective algorithm designed to quickly generate a diverse Pareto optimal set of IMRT plans that meet all clinical constraints and reflect the trade-offs in the plans. The top level of the hierarchical algorithm is a multiobjective evolutionary algorithm (MOEA). The genes of the individuals generated in the MOEA are the parameters that define the penalty function minimized during an accelerated deterministic IMRT optimization that represents the bottom level of the hierarchy. The MOEA incorporates clinical criteria to restrict the search space through protocol objectives and then uses Pareto optimality among the fitness objectives to select individuals. Results: Acceleration techniques implemented on both levels of the hierarchical algorithm resulted in short, practical runtimes for optimizations. The MOEA improvements were evaluated for example prostate cases with one target and two OARs. The modified MOEA dominated 11.3% of plans using a standard genetic algorithm package. By implementing domination advantage and protocol objectives, small diverse populations of clinically acceptable plans that were only dominated 0.2% by the Pareto front could be generated in a fraction of an hour. Conclusions: Our MOEA produces a diverse Pareto optimal set of plans that meet all dosimetric protocol criteria in a feasible amount of time. It optimizes not only beamlet intensities but also objective function parameters on a patient-specific basis

    A GPU-based multi-criteria optimization algorithm for HDR brachytherapy

    Full text link
    Currently in HDR brachytherapy planning, a manual fine-tuning of an objective function is necessary to obtain case-specific valid plans. This study intends to facilitate this process by proposing a patient-specific inverse planning algorithm for HDR prostate brachytherapy: GPU-based multi-criteria optimization (gMCO). Two GPU-based optimization engines including simulated annealing (gSA) and a quasi-Newton optimizer (gL-BFGS) were implemented to compute multiple plans in parallel. After evaluating the equivalence and the computation performance of these two optimization engines, one preferred optimization engine was selected for the gMCO algorithm. Five hundred sixty-two previously treated prostate HDR cases were divided into validation set (100) and test set (462). In the validation set, the number of Pareto optimal plans to achieve the best plan quality was determined for the gMCO algorithm. In the test set, gMCO plans were compared with the physician-approved clinical plans. Over 462 cases, the number of clinically valid plans was 428 (92.6%) for clinical plans and 461 (99.8%) for gMCO plans. The number of valid plans with target V100 coverage greater than 95% was 288 (62.3%) for clinical plans and 414 (89.6%) for gMCO plans. The mean planning time was 9.4 s for the gMCO algorithm to generate 1000 Pareto optimal plans. In conclusion, gL-BFGS is able to compute thousands of SA equivalent treatment plans within a short time frame. Powered by gL-BFGS, an ultra-fast and robust multi-criteria optimization algorithm was implemented for HDR prostate brachytherapy. A large-scale comparison against physician approved clinical plans showed that treatment plan quality could be improved and planning time could be significantly reduced with the proposed gMCO algorithm.Comment: 18 pages, 7 figure

    Patient-Specific Method of Generating Parametric Maps of Patlak K(i) without Blood Sampling or Metabolite Correction: A Feasibility Study.

    Get PDF
    Currently, kinetic analyses using dynamic positron emission tomography (PET) experience very limited use despite their potential for improving quantitative accuracy in several clinical and research applications. For targeted volume applications, such as radiation treatment planning, treatment monitoring, and cerebral metabolic studies, the key to implementation of these methods is the determination of an arterial input function, which can include time-consuming analysis of blood samples for metabolite correction. Targeted kinetic applications would become practical for the clinic if blood sampling and metabolite correction could be avoided. To this end, we developed a novel method (Patlak-P) of generating parametric maps that is identical to Patlak K(i) (within a global scalar multiple) but does not require the determination of the arterial input function or metabolite correction. In this initial study, we show that Patlak-P (a) mimics Patlak K(i) images in terms of visual assessment and target-to-background (TB) ratios of regions of elevated uptake, (b) has higher visual contrast and (generally) better image quality than SUV, and (c) may have an important role in improving radiotherapy planning, therapy monitoring, and neurometabolism studies
    corecore