332,777 research outputs found

    Genetic algorithms

    Get PDF
    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology

    Hyper-selection in dynamic environments

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2008 IEEEIn recent years, several approaches have been developed for genetic algorithms to enhance their performance in dynamic environments. Among these approaches, one kind of methods is to adapt genetic operators in order for genetic algorithms to adapt to a new environment. This paper investigates the effect of the selection pressure on the performance of genetic algorithms in dynamic environments. A hyper-selection scheme is proposed for genetic algorithms, where the selection pressure is temporarily raised whenever the environment changes. The hyper-selection scheme can be combined with other approaches for genetic algorithms in dynamic environments. Experiments are carried out to investigate the effect of different selection pressures on the performance of genetic algorithms in dynamic environments and to investigate the effect of the hyper-selection scheme on the performance of genetic algorithms in combination with several other schemes in dynamic environments. The experimental results indicate that the effect of the hyper-selection scheme depends on the problem under consideration and other schemes combined in genetic algorithms.This work was supported by UK EPSRC under Grant No. EP/E060722/1 and Brazil FAPESP under Grant Proc. 04/04289-6

    Memory-based immigrants for genetic algorithms in dynamic environments

    Get PDF
    Copyright @ 2005 ACMInvestigating and enhancing the performance of genetic algorithms in dynamic environments have attracted a growing interest from the community of genetic algorithms in recent years. This trend reflects the fact that many real world problems are actually dynamic, which poses serious challenge to traditional genetic algorithms. Several approaches have been developed into genetic algorithms for dynamic optimization problems. Among these approches, random immigrants and memory schemes have shown to be beneficial in many dynamic problems. This paper proposes a hybrid memory and random immigrants scheme for genetic algorithms in dynamic environments. In the hybrid scheme, the best solution in memory is retrieved and acts as the base to create random immigrants to replace the worst individuals in the population. In this way, not only can diversity be maintained but it is done more efficiently to adapt the genetic algorithm to the changing environment. The experimental results based on a series of systematically constructed dynamic problems show that the proposed memory based immigrants scheme efficiently improves the performance of genetic algorithms in dynamic environments

    A Novel Genetic Algorithm using Helper Objectives for the 0-1 Knapsack Problem

    Full text link
    The 0-1 knapsack problem is a well-known combinatorial optimisation problem. Approximation algorithms have been designed for solving it and they return provably good solutions within polynomial time. On the other hand, genetic algorithms are well suited for solving the knapsack problem and they find reasonably good solutions quickly. A naturally arising question is whether genetic algorithms are able to find solutions as good as approximation algorithms do. This paper presents a novel multi-objective optimisation genetic algorithm for solving the 0-1 knapsack problem. Experiment results show that the new algorithm outperforms its rivals, the greedy algorithm, mixed strategy genetic algorithm, and greedy algorithm + mixed strategy genetic algorithm

    Genetic algorithms: a pragmatic, non-parametric approach to exploratory analysis of questionnaires in educational research

    Get PDF
    Data from a survey to determine student attitudes to their courses are used as an example to show how genetic algorithms can be used in the analysis of questionnaire data. Genetic algorithms provide a means of generating logical rules which predict one variable in a data set by relating it to others. This paper explains the principle underlying genetic algorithms and gives a non-mathematical description of the means by which rules are generated. A commercially available computer program is used to apply genetic algorithms to the survey data. The results are discussed

    Optimal Recombination in Genetic Algorithms

    Full text link
    This paper surveys results on complexity of the optimal recombination problem (ORP), which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We consider efficient reductions of the ORPs, allowing to establish polynomial solvability or NP-hardness of the ORPs, as well as direct proofs of hardness results
    corecore