22 research outputs found

    Genericity versus expressivity - an exercise in semantic interoperable research information systems for Web Science

    Full text link
    The web does not only enable new forms of science, it also creates new possibilities to study science and new digital scholarship. This paper brings together multiple perspectives: from individual researchers seeking the best options to display their activities and market their skills on the academic job market; to academic institutions, national funding agencies, and countries needing to monitor the science system and account for public money spending. We also address the research interests aimed at better understanding the self-organising and complex nature of the science system through researcher tracing, the identification of the emergence of new fields, and knowledge discovery using large-data mining and non-linear dynamics. In particular this paper draws attention to the need for standardisation and data interoperability in the area of research information as an indispensable pre-condition for any science modelling. We discuss which levels of complexity are needed to provide a globally, interoperable, and expressive data infrastructure for research information. With possible dynamic science model applications in mind, we introduce the need for a "middle-range" level of complexity for data representation and propose a conceptual model for research data based on a core international ontology with national and local extensions.Comment: Long version of a paper submitted to the WebScience 201

    A Two-Level Information Modelling Translation Methodology and Framework to Achieve Semantic Interoperability in Constrained GeoObservational Sensor Systems

    Get PDF
    As geographical observational data capture, storage and sharing technologies such as in situ remote monitoring systems and spatial data infrastructures evolve, the vision of a Digital Earth, first articulated by Al Gore in 1998 is getting ever closer. However, there are still many challenges and open research questions. For example, data quality, provenance and heterogeneity remain an issue due to the complexity of geo-spatial data and information representation. Observational data are often inadequately semantically enriched by geo-observational information systems or spatial data infrastructures and so they often do not fully capture the true meaning of the associated datasets. Furthermore, data models underpinning these information systems are typically too rigid in their data representation to allow for the ever-changing and evolving nature of geo-spatial domain concepts. This impoverished approach to observational data representation reduces the ability of multi-disciplinary practitioners to share information in an interoperable and computable way. The health domain experiences similar challenges with representing complex and evolving domain information concepts. Within any complex domain (such as Earth system science or health) two categories or levels of domain concepts exist. Those concepts that remain stable over a long period of time, and those concepts that are prone to change, as the domain knowledge evolves, and new discoveries are made. Health informaticians have developed a sophisticated two-level modelling systems design approach for electronic health documentation over many years, and with the use of archetypes, have shown how data, information, and knowledge interoperability among heterogenous systems can be achieved. This research investigates whether two-level modelling can be translated from the health domain to the geo-spatial domain and applied to observing scenarios to achieve semantic interoperability within and between spatial data infrastructures, beyond what is possible with current state-of-the-art approaches. A detailed review of state-of-the-art SDIs, geo-spatial standards and the two-level modelling methodology was performed. A cross-domain translation methodology was developed, and a proof-of-concept geo-spatial two-level modelling framework was defined and implemented. The Open Geospatial Consortium’s (OGC) Observations & Measurements (O&M) standard was re-profiled to aid investigation of the two-level information modelling approach. An evaluation of the method was undertaken using II specific use-case scenarios. Information modelling was performed using the two-level modelling method to show how existing historical ocean observing datasets can be expressed semantically and harmonized using two-level modelling. Also, the flexibility of the approach was investigated by applying the method to an air quality monitoring scenario using a technologically constrained monitoring sensor system. This work has demonstrated that two-level modelling can be translated to the geospatial domain and then further developed to be used within a constrained technological sensor system; using traditional wireless sensor networks, semantic web technologies and Internet of Things based technologies. Domain specific evaluation results show that twolevel modelling presents a viable approach to achieve semantic interoperability between constrained geo-observational sensor systems and spatial data infrastructures for ocean observing and city based air quality observing scenarios. This has been demonstrated through the re-purposing of selected, existing geospatial data models and standards. However, it was found that re-using existing standards requires careful ontological analysis per domain concept and so caution is recommended in assuming the wider applicability of the approach. While the benefits of adopting a two-level information modelling approach to geospatial information modelling are potentially great, it was found that translation to a new domain is complex. The complexity of the approach was found to be a barrier to adoption, especially in commercial based projects where standards implementation is low on implementation road maps and the perceived benefits of standards adherence are low. Arising from this work, a novel set of base software components, methods and fundamental geo-archetypes have been developed. However, during this work it was not possible to form the required rich community of supporters to fully validate geoarchetypes. Therefore, the findings of this work are not exhaustive, and the archetype models produced are only indicative. The findings of this work can be used as the basis to encourage further investigation and uptake of two-level modelling within the Earth system science and geo-spatial domain. Ultimately, the outcomes of this work are to recommend further development and evaluation of the approach, building on the positive results thus far, and the base software artefacts developed to support the approach

    Mapping und Erweiterung der Ontologie des Forschungsinformationssystems VIVO

    Get PDF
    Die Bachelorarbeit beschäftigt sich mit der Ontologie des Forschungsinformationssystems VIVO. In der Arbeit wird der Versuch unternommen, die Ontologie an die Besonderheiten des deutschen Wissenschaftsbetriebs anzupassen, mit dem Ziel, die Einführung des Systems für eine deutsche Einrichtung zu erleichtern. Das Mapping und die Erweiterung sind auf die Bereiche „Positionsbezeichnungen“ und „Organisationseinheiten“ beschränkt. Der theoretische Teil behandelt das Thema der Forschungsinformationen und deren Implementierung in ein Forschungsinformationssystem. Unter anderem werden auch die Tendenzen der Standardisierung in dem Bereich beleuchtet. Bei der Darstellung von VIVO als eine Semantic-Web-Anwendung steht die Ontologie, als Grundlage für die Funktionalitäten des Systems im Vordergrund

    On the symbiosis between conceptual modeling and ontology engineering : recommendation-based conceptual modeling

    Get PDF
    Within an enterprise, different conceptual models, such as process, data, and goal models, are created by various stakeholders. These models are fundamentally based on similar underlying enterprise (domain) concepts, but they have a different focus, are represented using different modeling languages, take different viewpoints, utilize different terminology, and are used to develop different enterprise artefacts (such as documents, software, databases, etc.); therefore, they typically lack consistency and alignment. Another issue is that modelers have different vocabulary selections and different modeling styles. As a result, the enterprise can find itself accumulating a pile of models which cover similar aspects in different manners. Those models are not machine-readable and cannot be processed automatically. Enterprise-Specific Ontologies (ESOs) aim to solve this problem by serving as a reference during the conceptual model creation. Using such a shared semantic repository makes conceptual models semantically aligned and facilitates model integration. However, managing those ontologies is complicated; an enterprise is an evolving entity, and as it changes, the ESO might become outdated. During the years of research dedicated to this dissertation, the Recommendation-Based Conceptual Modeling and Ontology Evolution (CMOE+) framework was developed. This framework establishes a symbiotic relationship between the Ontology engineering and the Conceptual modeling fields. CMOE+ consists of two cycles: the Ontology Evolution cycle and the Conceptual Modeling cycle. The Ontology Evolution cycle is responsible for setting up the initial version of the ESO and updating it as the knowledge within the enterprise evolves. Additionally, this cycle encapsulates recommendation services to perform ontology look-up and to present the most relevant ESO concepts in support of the modeler. The Conceptual Modeling cycle is responsible for the creation of conceptual models in different modeling languages based on the ESO. This cycle is also concerned with the quality evaluation of the created models. CMOE+ was developed based on requirements identified as a result of a literature review and a case study. The development process follows the Design Science Research Methodology (DSRM). After the initial version of CMOE+ was put forward, our focus was narrowed towards the recommendation-based conceptual modeling part of CMOE+, and we continued to gradually improve the framework in iterations until it reached its current state. The Ontology Evolution Cycle is not fully addressed within the scope of this dissertation. In order to demonstrate the performance and usability of CMOE+, it was exemplified for process modeling using BPMN and goal modeling using i*. This thesis presents a detailed instantiation, and explains steps to be performed in order to instantiate CMOE+ for other modeling languages. In order to evaluate the process modeling instance of CMOE+, a CMOE+BPMN tool was implemented. This tool incorporates a BPMN modeler, facilitates storage and access of the ESO, and includes all algorithms functioning within CMOE+ for the BPMN modeling language (as some of the algorithms are language dependent). Next, CMOE+ was exemplified using the i* goal modeling language. Finally, we demonstrated the ability of CMOE+ to perform alignment between i* and BPMN models, in order to show that CMOE+ is indeed beneficial in achieving interoperability among models created in different modeling languages and covering distinct aspects of the enterprise

    Preface

    Get PDF

    24th International Conference on Information Modelling and Knowledge Bases

    Get PDF
    In the last three decades information modelling and knowledge bases have become essentially important subjects not only in academic communities related to information systems and computer science but also in the business area where information technology is applied. The series of European – Japanese Conference on Information Modelling and Knowledge Bases (EJC) originally started as a co-operation initiative between Japan and Finland in 1982. The practical operations were then organised by professor Ohsuga in Japan and professors Hannu Kangassalo and Hannu Jaakkola in Finland (Nordic countries). Geographical scope has expanded to cover Europe and also other countries. Workshop characteristic - discussion, enough time for presentations and limited number of participants (50) / papers (30) - is typical for the conference. Suggested topics include, but are not limited to: 1. Conceptual modelling: Modelling and specification languages; Domain-specific conceptual modelling; Concepts, concept theories and ontologies; Conceptual modelling of large and heterogeneous systems; Conceptual modelling of spatial, temporal and biological data; Methods for developing, validating and communicating conceptual models. 2. Knowledge and information modelling and discovery: Knowledge discovery, knowledge representation and knowledge management; Advanced data mining and analysis methods; Conceptions of knowledge and information; Modelling information requirements; Intelligent information systems; Information recognition and information modelling. 3. Linguistic modelling: Models of HCI; Information delivery to users; Intelligent informal querying; Linguistic foundation of information and knowledge; Fuzzy linguistic models; Philosophical and linguistic foundations of conceptual models. 4. Cross-cultural communication and social computing: Cross-cultural support systems; Integration, evolution and migration of systems; Collaborative societies; Multicultural web-based software systems; Intercultural collaboration and support systems; Social computing, behavioral modeling and prediction. 5. Environmental modelling and engineering: Environmental information systems (architecture); Spatial, temporal and observational information systems; Large-scale environmental systems; Collaborative knowledge base systems; Agent concepts and conceptualisation; Hazard prediction, prevention and steering systems. 6. Multimedia data modelling and systems: Modelling multimedia information and knowledge; Contentbased multimedia data management; Content-based multimedia retrieval; Privacy and context enhancing technologies; Semantics and pragmatics of multimedia data; Metadata for multimedia information systems. Overall we received 56 submissions. After careful evaluation, 16 papers have been selected as long paper, 17 papers as short papers, 5 papers as position papers, and 3 papers for presentation of perspective challenges. We thank all colleagues for their support of this issue of the EJC conference, especially the program committee, the organising committee, and the programme coordination team. The long and the short papers presented in the conference are revised after the conference and published in the Series of “Frontiers in Artificial Intelligence” by IOS Press (Amsterdam). The books “Information Modelling and Knowledge Bases” are edited by the Editing Committee of the conference. We believe that the conference will be productive and fruitful in the advance of research and application of information modelling and knowledge bases. Bernhard Thalheim Hannu Jaakkola Yasushi Kiyok
    corecore