260,789 research outputs found

    Polycation-Ï€ Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family

    Get PDF
    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al

    Molecular Recognition as an Information Channel: The Role of Conformational Changes

    Full text link
    Molecular recognition, which is essential in processing information in biological systems, takes place in a crowded noisy biochemical environment and requires the recognition of a specific target within a background of various similar competing molecules. We consider molecular recognition as a transmission of information via a noisy channel and use this analogy to gain insights on the optimal, or fittest, molecular recognizer. We focus on the optimal structural properties of the molecules such as flexibility and conformation. We show that conformational changes upon binding, which often occur during molecular recognition, may optimize the detection performance of the recognizer. We thus suggest a generic design principle termed 'conformational proofreading' in which deformation enhances detection. We evaluate the optimal flexibility of the molecular recognizer, which is analogous to the stochasticity in a decision unit. In some scenarios, a flexible recognizer, i.e., a stochastic decision unit, performs better than a rigid, deterministic one. As a biological example, we discuss conformational changes during homologous recombination, the process of genetic exchange between two DNA strands.Comment: Keywords--Molecular information channels, molecular recognition, conformational proofreading. http://www.weizmann.ac.il/complex/tlusty/papers/IEEE2009b.pd

    Multi-scale Orderless Pooling of Deep Convolutional Activation Features

    Full text link
    Deep convolutional neural networks (CNN) have shown their promise as a universal representation for recognition. However, global CNN activations lack geometric invariance, which limits their robustness for classification and matching of highly variable scenes. To improve the invariance of CNN activations without degrading their discriminative power, this paper presents a simple but effective scheme called multi-scale orderless pooling (MOP-CNN). This scheme extracts CNN activations for local patches at multiple scale levels, performs orderless VLAD pooling of these activations at each level separately, and concatenates the result. The resulting MOP-CNN representation can be used as a generic feature for either supervised or unsupervised recognition tasks, from image classification to instance-level retrieval; it consistently outperforms global CNN activations without requiring any joint training of prediction layers for a particular target dataset. In absolute terms, it achieves state-of-the-art results on the challenging SUN397 and MIT Indoor Scenes classification datasets, and competitive results on ILSVRC2012/2013 classification and INRIA Holidays retrieval datasets

    Learning Finer-class Networks for Universal Representations

    Full text link
    Many real-world visual recognition use-cases can not directly benefit from state-of-the-art CNN-based approaches because of the lack of many annotated data. The usual approach to deal with this is to transfer a representation pre-learned on a large annotated source-task onto a target-task of interest. This raises the question of how well the original representation is "universal", that is to say directly adapted to many different target-tasks. To improve such universality, the state-of-the-art consists in training networks on a diversified source problem, that is modified either by adding generic or specific categories to the initial set of categories. In this vein, we proposed a method that exploits finer-classes than the most specific ones existing, for which no annotation is available. We rely on unsupervised learning and a bottom-up split and merge strategy. We show that our method learns more universal representations than state-of-the-art, leading to significantly better results on 10 target-tasks from multiple domains, using several network architectures, either alone or combined with networks learned at a coarser semantic level.Comment: British Machine Vision Conference (BMVC) 201

    Antibody fragments as probe in biosensor development

    Get PDF
    Today's proteomic analyses are generating increasing numbers of biomarkers, making it essential to possess highly specific probes able to recognize those targets. Antibodies are considered to be the first choice as molecular recognition units due to their target specificity and affinity, which make them excellent probes in biosensor development. However several problems such as difficult directional immobilization, unstable behavior, loss of specificity and steric hindrance, may arise from using these large molecules. Luckily, protein engineering techniques offer designed antibody formats suitable for biomarker analysis. Minimization strategies of antibodies into Fab fragments, scFv or even single-domain antibody fragments like VH, VL or VHHs are reviewed. Not only the size of the probe but also other issues like choice of immobilization tag, type of solid support and probe stability are of critical importance in assay development for biosensing. In this respect, multiple approaches to specifically orient and couple antibody fragments in a generic one-step procedure directly on a biosensor substrate are discussed
    • …
    corecore