81 research outputs found

    A computability theoretic equivalent to Vaught's conjecture

    Full text link
    We prove that, for every theory TT which is given by an Lω1,ω{\mathcal L}_{\omega_1,\omega} sentence, TT has less than 2ℵ02^{\aleph_0} many countable models if and only if we have that, for every X∈2ωX\in 2^\omega on a cone of Turing degrees, every XX-hyperarithmetic model of TT has an XX-computable copy. We also find a concrete description, relative to some oracle, of the Turing-degree spectra of all the models of a counterexample to Vaught's conjecture

    PSPACE Bounds for Rank-1 Modal Logics

    Get PDF
    For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way

    Contingent composition as identity

    Get PDF
    When the necessity of identity is combined with composition as identity, the contingency of composition is at risk. In the extant literature, either NI is seen as the basis for a refutation of CAI or CAI is associated with a theory of modality, such that: either NI is renounced ; or CC is renounced. In this paper, we investigate the prospects of a new variety of CAI, which aims to preserve both NI and CC. This new variety of CAI is the quite natural product of the attempt to make sense of CAI on the background of a broadly Kripkean view of modality, such that one and the same entity is allowed to exist at more than one possible world. CCAI introduces a world-relative kind of identity, which is different from standard identity, and claims that composition is this kind of world-relative identity. CCAI manages to preserve NI and CC. We compare CCAI with Gibbard’s and Gallois’ doctrines of contingent identity and we show that CCAI can be sensibly interpreted as a form of Weak CAI, that is of the thesis that composition is not standard identity, yet is significantly similar to it

    Diagonalizations over polynomial time computable sets

    Get PDF
    AbstractA formal notion of diagonalization is developed which allows to enforce properties that are related to the class of polynomial time computable sets (the class of polynomial time computable functions respectively), like, e.g., p-immunity. It is shown that there are sets—called p-generic— which have all properties enforceable by such diagonalizations. We study the behaviour and the complexity of p-generic sets. In particular, we show that the existence of p-generic sets in NP is oracle dependent, even if we assume P ≠ NP

    Coalgebraic Reasoning with Global Assumptions in Arithmetic Modal Logics

    Get PDF
    We establish a generic upper bound ExpTime for reasoning with global assumptions (also known as TBoxes) in coalgebraic modal logics. Unlike earlier results of this kind, our bound does not require a tractable set of tableau rules for the instance logics, so that the result applies to wider classes of logics. Examples are Presburger modal logic, which extends graded modal logic with linear inequalities over numbers of successors, and probabilistic modal logic with polynomial inequalities over probabilities. We establish the theoretical upper bound using a type elimination algorithm. We also provide a global caching algorithm that potentially avoids building the entire exponential-sized space of candidate states, and thus offers a basis for practical reasoning. This algorithm still involves frequent fixpoint computations; we show how these can be handled efficiently in a concrete algorithm modelled on Liu and Smolka's linear-time fixpoint algorithm. Finally, we show that the upper complexity bound is preserved under adding nominals to the logic, i.e. in coalgebraic hybrid logic.Comment: Extended version of conference paper in FCT 201
    • …
    corecore