30 research outputs found

    Generic rectangulations

    Get PDF
    A rectangulation is a tiling of a rectangle by a finite number of rectangles. The rectangulation is called generic if no four of its rectangles share a single corner. We initiate the enumeration of generic rectangulations up to combinatorial equivalence by establishing an explicit bijection between generic rectangulations and a set of permutations defined by a pattern-avoidance condition analogous to the definition of the twisted Baxter permutations.Comment: Final version to appear in Eur. J. Combinatorics. Since v2, I became aware of literature on generic rectangulations under the name rectangular drawings. There are results on asymptotic enumeration and computations counting generic rectangulations with n rectangles for many n. This result answers an open question posed in the rectangular drawings literature. See "Note added in proof.

    A Note on Flips in Diagonal Rectangulations

    Get PDF
    Rectangulations are partitions of a square into axis-aligned rectangles. A number of results provide bijections between combinatorial equivalence classes of rectangulations and families of pattern-avoiding permutations. Other results deal with local changes involving a single edge of a rectangulation, referred to as flips, edge rotations, or edge pivoting. Such operations induce a graph on equivalence classes of rectangulations, related to so-called flip graphs on triangulations and other families of geometric partitions. In this note, we consider a family of flip operations on the equivalence classes of diagonal rectangulations, and their interpretation as transpositions in the associated Baxter permutations, avoiding the vincular patterns { 3{14}2, 2{41}3 }. This complements results from Law and Reading (JCTA, 2012) and provides a complete characterization of flip operations on diagonal rectangulations, in both geometric and combinatorial terms

    Efficient Generation of Rectangulations via Permutation Languages

    Get PDF
    A generic rectangulation is a partition of a rectangle into finitely many interior-disjoint rectangles, such that no four rectangles meet in a point. In this work we present a versatile algorithmic framework for exhaustively generating a large variety of different classes of generic rectangulations. Our algorithms work under very mild assumptions, and apply to a large number of rectangulation classes known from the literature, such as generic rectangulations, diagonal rectangulations, 1-sided/area-universal, block-aligned rectangulations, and their guillotine variants. They also apply to classes of rectangulations that are characterized by avoiding certain patterns, and in this work we initiate a systematic investigation of pattern avoidance in rectangulations. Our generation algorithms are efficient, in some cases even loopless or constant amortized time, i.e., each new rectangulation is generated in constant time in the worst case or on average, respectively. Moreover, the Gray codes we obtain are cyclic, and sometimes provably optimal, in the sense that they correspond to a Hamilton cycle on the skeleton of an underlying polytope. These results are obtained by encoding rectangulations as permutations, and by applying our recently developed permutation language framework

    Some notes on generic rectangulations

    Get PDF
    A rectangulation is a subdivision of a rectangle into rectangles. A generic rectangulation is a rectangulation that has no crossing segments. We explain several observations and pose some questions about generic rectangulations. In particular, we show how one may "centrally invert" a generic rectangulation about any given rectangle, analogous to reflection across a circle in classical geometry. We also explore 3-dimensional orthogonal polytopes related to "marked" rectangulations and drawings of planar maps.  These observations arise from viewing a generic rectangulation as topologically equivalent to a sphere

    Efficient generation of rectangulations via permutation languages

    Get PDF
    A generic rectangulation is a partition of a rectangle into finitely many interior-disjoint rectangles, such that no four rectangles meet in a point. In this work we present a versatile algorithmic framework for exhaustively generating a large variety of different classes of generic rectangulations. Our algorithms work under very mild assumptions, and apply to a large number of rectangulation classes known from the literature, such as generic rectangulations, diagonal rectangulations, 1-sided/area-universal, block-aligned rectangulations, and their guillotine variants. They also apply to classes of rectangulations that are characterized by avoiding certain patterns, and in this work we initiate a systematic investigation of pattern avoidance in rectangulations. Our generation algorithms are efficient, in some cases even loopless or constant amortized time, i.e., each new rectangulation is generated in constant time in the worst case or on average, respectively. Moreover, the Gray codes we obtain are cyclic, and sometimes provably optimal, in the sense that they correspond to a Hamilton cycle on the skeleton of an underlying polytope. These results are obtained by encoding rectangulations as permutations, and by applying our recently developed permutation language framework

    Pinwheel patterns: from 2D to 3D schemas

    Get PDF
    Pinwheels are generic configurations in architectural layout planning. Planar pinwheels provide familiar schemes for layouts which present design ‘in the round’ with a cyclic symmetry. The paper examines the 3-D versions of 2-D pinwheels where a ‘locked’ joint with three rectangular volume elements aligned along orthogonal axes is a characteristic feature. Pairing handed versions of these locked joints yields a candidate for a 3-D pinwheel schema with six repeated volume elements and threefold cyclic symmetry. Shape rules, based on spatial relations between volumes, generate this and other examples of 3-D pinwheel schemas. These schemas are set in a wider analysis of the numbers and types of joints in 3-rectangulations in terms of maximal bounding planes. The bounding-plane views of the arrangements is set alongside more functional volume descriptions which enables the elements and relations in architectural form to be (re)generated and (re)interpreted both ‘in view’ and ‘in use’

    On the Number of Tilings of a Square by Rectangles

    Get PDF

    Combinatorial generation via permutation languages

    Get PDF
    In this work we present a general and versatile algorithmic framework for exhaustively generating a large variety of different combinatorial objects, based on encoding them as permutations. This approach provides a unified view on many known results and allows us to prove many new ones. In particular, we obtain the following four classical Gray codes as special cases: the Steinhaus-Johnson-Trotter algorithm to generate all permutations of an nn-element set by adjacent transpositions; the binary reflected Gray code to generate all nn-bit strings by flipping a single bit in each step; the Gray code for generating all nn-vertex binary trees by rotations due to Lucas, van Baronaigien, and Ruskey; the Gray code for generating all partitions of an nn-element ground set by element exchanges due to Kaye. We present two distinct applications for our new framework: The first main application is the generation of pattern-avoiding permutations, yielding new Gray codes for different families of permutations that are characterized by the avoidance of certain classical patterns, (bi)vincular patterns, barred patterns, Bruhat-restricted patterns, mesh patterns, monotone and geometric grid classes, and many others. We thus also obtain new Gray code algorithms for the combinatorial objects that are in bijection to these permutations, in particular for five different types of geometric rectangulations, also known as floorplans, which are divisions of a square into nn rectangles subject to certain restrictions. The second main application of our framework are lattice congruences of the weak order on the symmetric group~SnS_n. Recently, Pilaud and Santos realized all those lattice congruences as (n−1)(n-1)-dimensional polytopes, called quotientopes, which generalize hypercubes, associahedra, permutahedra etc. Our algorithm generates the equivalence classes of each of those lattice congruences, by producing a Hamilton path on the skeleton of the corresponding quotientope, yielding a constructive proof that each of these highly symmetric graphs is Hamiltonian. We thus also obtain a provable notion of optimality for the Gray codes obtained from our framework: They translate into walks along the edges of a polytope
    corecore