51 research outputs found

    Secure Equality Test Technique Using Identity-Based Signcryption for Telemedicine Systems

    Get PDF
    For telemedicine, wireless body area network (WBAN) offers enormous benefits where a patient can be remotely monitored without compromising the mobility of remote treatments. With the advent of high capacity and reliable wireless networks, WBANs are used in several remote monitoring systems, limiting the COVID-19 spread. The sensitivity of telemedicine applications mandates confidentiality and privacy requirements. In this article, we propose a secure WBAN-19 telemedicine system to overcome the pervasiveness of contagious deceases utilizing a novel aggregate identity-based signcryption scheme with an equality test feature. We demonstrate a security analysis regarding indistinguishable adaptive chosen-ciphertext attack (IND-CCA2), one-way security against adaptive chosen-ciphertext attack (OW-CCA2), and unforgeability against adaptive chosen-message attack (EUF-CMA) under the random oracle model. The security analysis of the scheme is followed by complexity evaluations where the computation cost and communication overhead are measured. The evaluation demonstrates that the proposed model is efficient and applicable in telemedicine systems with high-performance capacities

    Can you sign a quantum state?

    Get PDF
    Cryptography with quantum states exhibits a number of surprising and counterintuitive features. In a 2002 work, Barnum et al. argued informally that these strange features should imply that digital signatures for quantum states are impossible (Barnum et al., FOCS 2002). In this work, we perform the first rigorous study of the problem of signing quantum states. We first show that the intuition of Barnum et al. was correct, by proving an impossibility result which rules out even very weak forms of signing quantum states. Essentially, we show that any non-trivial combination of correctness and security requirements results in negligible security. This rules out all quantum signature schemes except those which simply measure the state and then sign the outcome using a classical scheme. In other words, only classical signature schemes exist. We then show a positive result: it is possible to sign quantum states, provided that they are also encrypted with the public key of the intended recipient. Following classical nomenclature, we call this notion quantum signcryption. Classically, signcryption is only interesting if it provides superior efficiency to simultaneous encryption and signing. Our results imply that, quantumly, it is far more interesting: by the laws of quantum mechanics, it is the only signing method available. We develop security definitions for quantum signcryption, ranging from a simple one-time two-user setting, to a chosen-ciphertext-secure many-time multi-user setting. We also give secure constructions based on post-quantum public-key primitives. Along the way, we show that a natural hybrid method of combining classical and quantum schemes can be used to "upgrade" a secure classical scheme to the fully-quantum setting, in a wide range of cryptographic settings including signcryption, authenticated encryption, and chosen-ciphertext security

    Fast and Proven Secure Blind Identity-Based Signcryption from Pairings

    Get PDF
    We present the first blind identity-based signcryption (BIBSC). We formulate its security model and define the security notions of blindness and parallel one-more unforgeability (p1m-uf). We present an efficient construction from pairings, then prove a security theorem that reduces its p1m-uf to Schnorr¡¦s ROS Problem in the random oracle model plus the generic group and pairing model. The latter model is an extension of the generic group model to add support for pairings, which we introduce in this paper. In the process, we also introduce a new security model for (non-blind) identity-based signcryption (IBSC) which is a strengthening of Boyen¡¦s. We construct the first IBSC scheme proven secure in the strenghened model which is also the fastest (resp. shortest) IBSC in this model or Boyen¡¦s model. The shortcomings of several existing IBSC schemes in the strenghened model are shown

    Contributions to secret sharing and other distributed cryptosystems

    Get PDF
    The present thesis deals with primitives related to the eld of distributed cryptography. First, we study signcryption schemes, which provide at the same time the functionalities of encryption and signature, where the unsigncryption operation is distributed. We consider this primitive from a theoretical point of view and set a security framework for it. Then, we present two signcryption schemes with threshold unsigncryption, with di erent properties. Furthermore, we use their authenticity property to apply them in the development of a di erent primitive: digital signatures with distributed veri cation. The second block of the thesis deals with the primitive of multi-secret sharing schemes. After stating some e ciency limitations of multi-secret sharing schemes in an information-theoretic scenario, we present several multi-secret sharing schemes with provable computational security. Finally, we use the results in multi-secret sharing schemes to generalize the traditional framework of distributed cryptography (with a single policy of authorized subsets) into a multipolicy setting, and we present both a multi-policy distributed decryption scheme and a multi-policy distributed signature scheme. Additionally, we give a short outlook on how to apply the presented multi-secret sharing schemes in the design of other multi-policy cryptosystems, like the signcryption schemes considered in this thesis. For all the schemes proposed throughout the thesis, we follow the same formal structure. After de ning the protocols of the primitive and the corresponding security model, we propose the new scheme and formally prove its security, by showing a reduction to some computationally hard mathematical problem.Avui en dia les persones estan implicades cada dia més en diferents activitats digitals tant en la seva vida professional com en el seu temps lliure. Molts articles de paper, com diners i tiquets, estan sent reemplaçats més i més per objectes digitals. La criptografia juga un paper crucial en aquesta transformació, perquè proporciona seguretat en la comunicació entre els diferents participants que utilitzen un canal digital. Depenent de la situació específica, alguns requisits de seguretat en la comunicació poden incloure privacitat (o confidencialitat), autenticitat, integritat o no-repudi. En algunes situacions, repartir l'operació secreta entre un grup de participants fa el procés més segur i fiable que quan la informació secreta està centralitzada en un únic participant; la criptografia distribuïda és l’àrea de la criptografia que estudia aquestes situacions. Aquesta tesi tracta de primitives relacionades amb el camp de la criptografia distribuïda. Primer, estudiem esquemes “signcryption”, que ofereixen a la vegada les funcionalitats de xifrat i signatura, on l'operació de “unsigncryption” està distribuïda. Considerem aquesta primitiva des d’un punt de vista teòric i establim un marc de seguretat per ella. Llavors, presentem dos esquemes “signcryption” amb operació de “unsigncryption” determinada per una estructura llindar, cada un amb diferents propietats. A més, utilitzem la seva propietat d’autenticitat per desenvolupar una nova primitiva: signatures digitals amb verificació distribuïda. El segon bloc de la tesi tracta la primitiva dels esquemes de compartició de multi-secrets. Després de demostrar algunes limitacions en l’eficiència dels esquemes de compartició de multi-secrets en un escenari de teoria de la informació, presentem diversos esquemes de compartició de multi-secrets amb seguretat computacional demostrable. Finalment, utilitzem els resultats obtinguts en els esquemes de compartició de multi-secrets per generalitzar el paradigma tradicional de la criptografia distribuïda (amb una única política de subconjunts autoritzats) a un marc multi-política, i presentem un esquema de desxifrat distribuït amb multi-política i un esquema de signatura distribuïda amb multi-política. A més, donem indicacions de com es poden aplicar els nostres esquemes de compartició de multi-secrets en el disseny d’altres criptosistemes amb multi-política, com per exemple els esquemes “signcryption” considerats en aquesta tesi. Per tots els esquemes proposats al llarg d’aquesta tesi, seguim la mateixa estructura formal. Després de definir els protocols de la primitiva primitius i el model de seguretat corresponent, proposem el nou esquema i demostrem formalment la seva seguretat, mitjançant una reducció a algun problema matemàtic computacionalment difícil

    Studies on the Security of Selected Advanced Asymmetric Cryptographic Primitives

    Get PDF
    The main goal of asymmetric cryptography is to provide confidential communication, which allows two parties to communicate securely even in the presence of adversaries. Ever since its invention in the seventies, asymmetric cryptography has been improved and developed further, and a formal security framework has been established around it. This framework includes different security goals, attack models, and security notions. As progress was made in the field, more advanced asymmetric cryptographic primitives were proposed, with other properties in addition to confidentiality. These new primitives also have their own definitions and notions of security. This thesis consists of two parts, where the first relates to the security of fully homomorphic encryption and related primitives. The second part presents a novel cryptographic primitive, and defines what security goals the primitive should achieve. The first part of the thesis consists of Article I, II, and III, which all pertain to the security of homomorphic encryption schemes in one respect or another. Article I demonstrates that a particular fully homomorphic encryption scheme is insecure in the sense that an adversary with access only to the public material can recover the secret key. It is also shown that this insecurity mainly stems from the operations necessary to make the scheme fully homomorphic. Article II presents an adaptive key recovery attack on a leveled homomorphic encryption scheme. The scheme in question claimed to withstand precisely such attacks, and was the only scheme of its kind to do so at the time. This part of the thesis culminates with Article III, which is an overview article on the IND-CCA1 security of all acknowledged homomorphic encryption schemes. The second part of the thesis consists of Article IV, which presents Vetted Encryption (VE), a novel asymmetric cryptographic primitive. The primitive is designed to allow a recipient to vet who may send them messages, by setting up a public filter with a public verification key, and providing each vetted sender with their own encryption key. There are three different variants of VE, based on whether the sender is identifiable to the filter and/or the recipient. Security definitions, general constructions and comparisons to already existing cryptographic primitives are provided for all three variants.Doktorgradsavhandlin

    Heterogeneous Signcryption Scheme with Group Equality Test for Satellite-enabled IoVs

    Get PDF
    With the growing popularization of the Internet of Vehicles (IoVs), the combination of satellite navigation system and IoVs is also in a state of continuous improvement. In this paper, we present a heterogeneous signcryption scheme with group equality test for IoVs (HSC-GET), which avoids the adversaries existing in the insecure channels to intercept, alter or delete messages from satellite to vehicles. The satellite is arranged in an identity-based cryptographic (IBC) system to ensure safe and fast transmission of instruction, while the vehicles are arranged in certificateless cryptosystem (CLC) to concern the security of the equipment. In addition, the group granularity authorization is integrated to ensure the cloud server can only execute the equality test on ciphertext generated by the same group of vehicles. Through rigorous performance and security analyses, we observe that our proposed construction reduces the equality test overhead by about 63:96%, 81:23%, 80:84%, and 54:98% in comparison to other competitive protocols. Furthermore, the confidentiality, integrity and authenticity of messages are guaranteed

    Can you sign a quantum state?

    Get PDF
    Cryptography with quantum states exhibits a number of surprising and counter-intuitive features. In a 2002 work, Barnum et al. argued that these features imply that digital signatures for quantum states are impossible [7]. In this work, we ask: can all forms of signing quantum data, even in a possibly weak sense, be completely ruled out? We give two results which shed significant light on this basic question. First, we prove an impossibility result for digital signatures for quantum data, which extends the result of [7]. Specifically, we show that no nontrivial combination of correctness and security requirements can be fulfilled, beyond what is achievable simply by measuring the quantum message and then signing the outcome. In other words, only classical signature schemes exist. We then show a positive result: a quantum state can be signed with the same security guarantees as classically, provided that it is also encrypted with the public key of the intended recipient. Following classical nomenclature, we call this notion quantum signcryption. Classically, signcryption is only interesting if it provides superior performance to encrypt-then-sign. Quantumly, it is far more interesting: it is the only signing method available. We develop “as-strong-as-classical” security definitions for quantum signcryption and give secure constructions based on post-quantum public-key primitives. Along the way, we show that a natural hybrid method of combining classical and quantum schemes can be used to “upgrade” a secure classical scheme to the fully-quantum setting, in a wide range of cryptographic settings including signcryption, authenticated encryption, and CCA security

    Identity based cryptography from pairings.

    Get PDF
    Yuen Tsz Hon.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 109-122).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiList of Notations --- p.viiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Identity Based Cryptography --- p.3Chapter 1.2 --- Hierarchical Identity Based Cryptosystem --- p.4Chapter 1.3 --- Our contributions --- p.5Chapter 1.4 --- Publications --- p.5Chapter 1.4.1 --- Publications Produced from This Thesis --- p.5Chapter 1.4.2 --- Publications During Author's Study in the Degree --- p.6Chapter 1.5 --- Thesis Organization --- p.6Chapter 2 --- Background --- p.8Chapter 2.1 --- Complexity Theory --- p.8Chapter 2.1.1 --- Order Notation --- p.8Chapter 2.1.2 --- Algorithms and Protocols --- p.9Chapter 2.1.3 --- Relations and Languages --- p.11Chapter 2.2 --- Algebra and Number Theory --- p.12Chapter 2.2.1 --- Groups --- p.12Chapter 2.2.2 --- Elliptic Curve --- p.13Chapter 2.2.3 --- Pairings --- p.14Chapter 2.3 --- Intractability Assumptions --- p.15Chapter 2.4 --- Cryptographic Primitives --- p.18Chapter 2.4.1 --- Public Key Encryption --- p.18Chapter 2.4.2 --- Digital Signature --- p.19Chapter 2.4.3 --- Zero Knowledge --- p.21Chapter 2.5 --- Hash Functions --- p.23Chapter 2.6 --- Random Oracle Model --- p.24Chapter 3 --- Literature Review --- p.26Chapter 3.1 --- Identity Based Signatures --- p.26Chapter 3.2 --- Identity Based Encryption --- p.27Chapter 3.3 --- Identity Based Signcryption --- p.27Chapter 3.4 --- Identity Based Blind Signatures --- p.28Chapter 3.5 --- Identity Based Group Signatures --- p.28Chapter 3.6 --- Hierarchical Identity Based Cryptography --- p.29Chapter 4 --- Blind Identity Based Signcryption --- p.30Chapter 4.1 --- Schnorr's ROS problem --- p.31Chapter 4.2 --- BIBSC and Enhanced IBSC Security Model --- p.32Chapter 4.2.1 --- Enhanced IBSC Security Model --- p.33Chapter 4.2.2 --- BIBSC Security Model --- p.36Chapter 4.3 --- Efficient and Secure BIBSC and IBSC Schemes --- p.38Chapter 4.3.1 --- Efficient and Secure IBSC Scheme --- p.38Chapter 4.3.2 --- The First BIBSC Scheme --- p.43Chapter 4.4 --- Generic Group and Pairing Model --- p.47Chapter 4.5 --- Comparisons --- p.52Chapter 4.5.1 --- Comment for IND-B --- p.52Chapter 4.5.2 --- Comment for IND-C --- p.54Chapter 4.5.3 --- Comment for EU --- p.55Chapter 4.6 --- Additional Functionality of Our Scheme --- p.56Chapter 4.6.1 --- TA Compatibility --- p.56Chapter 4.6.2 --- Forward Secrecy --- p.57Chapter 4.7 --- Chapter Conclusion --- p.57Chapter 5 --- Identity Based Group Signatures --- p.59Chapter 5.1 --- New Intractability Assumption --- p.61Chapter 5.2 --- Security Model --- p.62Chapter 5.2.1 --- Syntax --- p.63Chapter 5.2.2 --- Security Notions --- p.64Chapter 5.3 --- Constructions --- p.68Chapter 5.3.1 --- Generic Construction --- p.68Chapter 5.3.2 --- An Instantiation: IBGS-SDH --- p.69Chapter 5.4 --- Security Theorems --- p.73Chapter 5.5 --- Discussions --- p.81Chapter 5.5.1 --- Other Instantiations --- p.81Chapter 5.5.2 --- Short Ring Signatures --- p.82Chapter 5.6 --- Chapter Conclusion --- p.82Chapter 6 --- Hierarchical IBS without Random Oracles --- p.83Chapter 6.1 --- New Intractability Assumption --- p.87Chapter 6.2 --- Security Model: HIBS and HIBSC --- p.89Chapter 6.2.1 --- HIBS Security Model --- p.89Chapter 6.2.2 --- Hierarchical Identity Based Signcryption (HIBSC) --- p.92Chapter 6.3 --- Efficient Instantiation of HIBS --- p.95Chapter 6.3.1 --- Security Analysis --- p.96Chapter 6.3.2 --- Ordinary Signature from HIBS --- p.101Chapter 6.4 --- Plausibility Arguments for the Intractability of the OrcYW Assumption --- p.102Chapter 6.5 --- Efficient HIBSC without Random Oracles --- p.103Chapter 6.5.1 --- Generic Composition from HIBE and HIBS --- p.104Chapter 6.5.2 --- Concrete Instantiation --- p.105Chapter 6.6 --- Chapter Conclusion --- p.107Chapter 7 --- Conclusion --- p.108Bibliography --- p.10
    corecore