2,522 research outputs found

    Diophantine equations in two variables

    Full text link
    This is an expository lecture on the subject of the title delivered at the Park-IAS mathematical institute in Princeton (July, 2000).Comment: Not for separate publicatio

    Computational Arithmetic Geometry I: Sentences Nearly in the Polynomial Hierarchy

    Get PDF
    We consider the average-case complexity of some otherwise undecidable or open Diophantine problems. More precisely, consider the following: (I) Given a polynomial f in Z[v,x,y], decide the sentence \exists v \forall x \exists y f(v,x,y)=0, with all three quantifiers ranging over N (or Z). (II) Given polynomials f_1,...,f_m in Z[x_1,...,x_n] with m>=n, decide if there is a rational solution to f_1=...=f_m=0. We show that, for almost all inputs, problem (I) can be done within coNP. The decidability of problem (I), over N and Z, was previously unknown. We also show that the Generalized Riemann Hypothesis (GRH) implies that, for almost all inputs, problem (II) can be done via within the complexity class PP^{NP^NP}, i.e., within the third level of the polynomial hierarchy. The decidability of problem (II), even in the case m=n=2, remains open in general. Along the way, we prove results relating polynomial system solving over C, Q, and Z/pZ. We also prove a result on Galois groups associated to sparse polynomial systems which may be of independent interest. A practical observation is that the aforementioned Diophantine problems should perhaps be avoided in the construction of crypto-systems.Comment: Slight revision of final journal version of an extended abstract which appeared in STOC 1999. This version includes significant corrections and improvements to various asymptotic bounds. Needs cjour.cls to compil

    Convex Combinatorial Optimization

    Full text link
    We introduce the convex combinatorial optimization problem, a far reaching generalization of the standard linear combinatorial optimization problem. We show that it is strongly polynomial time solvable over any edge-guaranteed family, and discuss several applications

    Laminated Wave Turbulence: Generic Algorithms III

    Full text link
    Model of laminated wave turbulence allows to study statistical and discrete layers of turbulence in the frame of the same model. Statistical layer is described by Zakharov-Kolmogorov energy spectra in the case of irrational enough dispersion function. Discrete layer is covered by some system(s) of Diophantine equations while their form is determined by wave dispersion function. This presents a very special computational challenge - to solve Diophantine equations in many variables, usually 6 to 8, in high degrees, say 16, in integers of order 101610^{16} and more. Generic algorithms for solving this problem in the case of {\it irrational} dispersion function have been presented in our previous papers. In this paper we present a new generic algorithm for the case of {\it rational} dispersion functions. Special importance of this case is due to the fact that in wave systems with rational dispersion the statistical layer does not exist and the general energy transport is governed by the discrete layer alone.Comment: submitted to IJMP

    Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy

    Full text link
    It is shown that for any fixed i>0i>0, the Σi+1\Sigma_{i+1}-fragment of Presburger arithmetic, i.e., its restriction to i+1i+1 quantifier alternations beginning with an existential quantifier, is complete for ΣiEXP\mathsf{\Sigma}^{\mathsf{EXP}}_{i}, the ii-th level of the weak EXP hierarchy, an analogue to the polynomial-time hierarchy residing between NEXP\mathsf{NEXP} and EXPSPACE\mathsf{EXPSPACE}. This result completes the computational complexity landscape for Presburger arithmetic, a line of research which dates back to the seminal work by Fischer & Rabin in 1974. Moreover, we apply some of the techniques developed in the proof of the lower bound in order to establish bounds on sets of naturals definable in the Σ1\Sigma_1-fragment of Presburger arithmetic: given a Σ1\Sigma_1-formula Φ(x)\Phi(x), it is shown that the set of non-negative solutions is an ultimately periodic set whose period is at most doubly-exponential and that this bound is tight.Comment: 10 pages, 2 figure
    • …
    corecore