23 research outputs found

    Next Generation Network Routing and Control Plane

    Get PDF

    Next generation control of transport networks

    Get PDF
    It is widely understood by telecom operators and industry analysts that bandwidth demand is increasing dramatically, year on year, with typical growth figures of 50% for Internet-based traffic [5]. This trend means that the consumers will have both a wide variety of devices attaching to their networks and a range of high bandwidth service requirements. The corresponding impact is the effect on the traffic engineered network (often referred to as the “transport network”) to ensure that the current rate of growth of network traffic is supported and meets predicted future demands. As traffic demands increase and newer services continuously arise, novel network elements are needed to provide more flexibility, scalability, resilience, and adaptability to today’s transport network. The transport network provides transparent traffic engineered communication of user, application, and device traffic between attached clients (software and hardware) and establishing and maintaining point-to-point or point-to-multipoint connections. The research documented in this thesis was based on three initial research questions posed while performing research at British Telecom research labs and investigating control of transport networks of future transport networks: 1. How can we meet Internet bandwidth growth yet minimise network costs? 2. Which enabling network technologies might be leveraged to control network layers and functions cooperatively, instead of separated network layer and technology control? 3. Is it possible to utilise both centralised and distributed control mechanisms for automation and traffic optimisation? This thesis aims to provide the classification, motivation, invention, and evolution of a next generation control framework for transport networks, and special consideration of delivering broadcast video traffic to UK subscribers. The document outlines pertinent telecoms technology and current art, how requirements I gathered, and research I conducted, and by which the transport control framework functional components are identified and selected, and by which method the architecture was implemented and applied to key research projects requiring next generation control capabilities, both at British Telecom and the wider research community. Finally, in the closing chapters, the thesis outlines the next steps for ongoing research and development of the transport network framework and key areas for further study

    Foutbestendige toekomstige internetarchitecturen

    Get PDF

    Enhanced connectivity in wireless mobile programmable networks

    Get PDF
    Mención Interancional en el título de doctorThe architecture of current operator infrastructures is being challenged by the non-stop growing demand of data hungry services appearing every day. While currently deployed operator networks have been able to cope with traffic demands so far, the architectures for the 5th generation of mobile networks (5G) are expected to support unprecedented traffic loads while decreasing costs associated with the network deployment and operations. Indeed, the forthcoming set of 5G standards will bring programmability and flexibility to levels never seen before. This has required introducing changes in the architecture of mobile networks, enabling different features such as the split of control and data planes, as required to support rapid programming of heterogeneous data planes. Network softwarisation is hence seen as a key enabler to cope with such network evolution, as it permits controlling all networking functions through (re)programming, thus providing higher flexibility to meet heterogeneous requirements while keeping deployment and operational costs low. A great diversity in terms of traffic patterns, multi-tenancy, heterogeneous and stringent traffic requirements is therefore expected in 5G networks. Software Defined Networking (SDN) and Network Function Virtualisation (NFV) have emerged as a basic tool-set for operators to manage their infrastructure with increased flexibility and reduced costs. As a result, new 5G services can now be envisioned and quickly programmed and provisioned in response to user and market necessities, imposing a paradigm shift in the services design. However, such flexibility requires the 5G transport network to undergo a profound transformation, evolving from a static connectivity substrate into a service-oriented infrastructure capable of accommodating the various 5G services, including Ultra-Reliable and Low Latency Communications (URLLC). Moreover, to achieve the desired flexibility and cost reduction, one promising approach is to leverage virtualisation technologies to dynamically host contents, services, and applications closer to the users so as to offload the core network and reduce the communication delay. This thesis tackles the above challengeswhicharedetailedinthefollowing. A common characteristic of the 5G servicesistheubiquityandthealmostpermanent connection that is required from the mobile network. This really imposes a challenge in thesignallingproceduresprovidedtogettrack of the users and to guarantee session continuity. The mobility management mechanisms will hence play a central role in the 5G networks because of the always-on connectivity demand. Distributed Mobility Management (DMM) helps going towards this direction, by flattening the network, hence improving its scalability,andenablinglocalaccesstotheInternet and other communication services, like mobile-edge clouds. Simultaneously, SDN opens up the possibility of running a multitude of intelligent and advanced applications for network optimisation purposes in a centralised network controller. The combination of DMM architectural principles with SDN management appears as a powerful tool for operators to cope with the management and data burden expected in 5G networks. To meet the future mobile user demand at a reduced cost, operators are also looking at solutions such as C-RAN and different functional splits to decrease the cost of deploying and maintaining cell sites. The increasing stress on mobile radio access performance in a context of declining revenues for operators is hence requiring the evolution of backhaul and fronthaul transport networks, which currently work decoupled. The heterogeneity of the nodes and transmisión technologies inter-connecting the fronthaul and backhaul segments makes the network quite complex, costly and inefficient to manage flexibly and dynamically. Indeed, the use of heterogeneous technologies forces operators to manage two physically separated networks, one for backhaul and one forfronthaul. In order to meet 5G requirements in a costeffective manner, a unified 5G transport network that unifies the data, control, and management planes is hence required. Such an integrated fronthaul/backhaul transport network, denoted as crosshaul, will hence carry both fronthaul and backhaul traffic operating over heterogeneous data plane technologies, which are software-controlled so as to adapt to the fluctuating capacity demand of the 5G air interfaces. Moreover, 5G transport networks will need to accommodate a wide spectrum of services on top of the same physical infrastructure. To that end, network slicing is seen as a suitable candidate for providing the necessary Quality of Service (QoS). Traffic differentiation is usually enforced at the border of the network in order to ensure a proper forwarding of the traffic according to its class through the backbone. With network slicing, the traffic may now traverse many slice edges where the traffic policy needs to be enforced, discriminated and ensured, according to the service and tenants needs. However, the very basic nature that makes this efficient management and operation possible in a flexible way – the logical centralisation – poses important challenges due to the lack of proper monitoring tools, suited for SDN-based architectures. In order to take timely and right decisions while operating a network, centralised intelligence applications need to be fed with a continuous stream of up-to-date network statistics. However, this is not feasible with current SDN solutions due to scalability and accuracy issues. Therefore, an adaptive telemetry system is required so as to support the diversity of 5G services and their stringent traffic requirements. The path towards 5G wireless networks alsopresentsacleartrendofcarryingoutcomputations close to end users. Indeed, pushing contents, applications, and network functios closer to end users is necessary to cope with thehugedatavolumeandlowlatencyrequired in future 5G networks. Edge and fog frameworks have emerged recently to address this challenge. Whilst the edge framework was more infrastructure-focused and more mobile operator-oriented, the fog was more pervasive and included any node (stationary or mobile), including terminal devices. By further utilising pervasive computational resources in proximity to users, edge and fog can be merged to construct a computing platform, which can also be used as a common stage for multiple radio access technologies (RATs) to share their information, hence opening a new dimension of multi-RAT integration.La arquitectura de las infraestructuras actuales de los operadores está siendo desafiada por la demanda creciente e incesante de servicios con un elevado consumo de datos que aparecen todos los días. Mientras que las redes de operadores implementadas actualmente han sido capaces de lidiar con las demandas de tráfico hasta ahora, se espera que las arquitecturas de la quinta generación de redes móviles (5G) soporten cargas de tráfico sin precedentes a la vez que disminuyen los costes asociados a la implementación y operaciones de la red. De hecho, el próximo conjunto de estándares 5G traerá la programabilidad y flexibilidad a niveles nunca antes vistos. Esto ha requerido la introducción de cambios en la arquitectura de las redes móviles, lo que permite diferentes funciones, como la división de los planos de control y de datos, según sea necesario para soportar una programación rápida de planos de datos heterogéneos. La softwarisación de red se considera una herramienta clave para hacer frente a dicha evolución de red, ya que proporciona la capacidad de controlar todas las funciones de red mediante (re)programación, proporcionando así una mayor flexibilidad para cumplir requisitos heterogéneos mientras se mantienen bajos los costes operativos y de implementación. Por lo tanto, se espera una gran diversidad en términos de patrones de tráfico, multi-tenancy, requisitos de tráfico heterogéneos y estrictos en las redes 5G. Software Defined Networking (SDN) y Network Function Virtualisation (NFV) se han convertido en un conjunto de herramientas básicas para que los operadores administren su infraestructura con mayor flexibilidad y menores costes. Como resultado, los nuevos servicios 5G ahora pueden planificarse, programarse y aprovisionarse rápidamente en respuesta a las necesidades de los usuarios y del mercado, imponiendo un cambio de paradigma en el diseño de los servicios. Sin embargo, dicha flexibilidad requiere que la red de transporte 5G experimente una transformación profunda, que evoluciona de un sustrato de conectividad estática a una infraestructura orientada a servicios capaz de acomodar los diversos servicios 5G, incluso Ultra-Reliable and Low Latency Communications (URLLC). Además, para lograr la flexibilidad y la reducción de costes deseadas, un enfoque prometedores aprovechar las tecnologías de virtualización para alojar dinámicamente los contenidos, servicios y aplicaciones más cerca de los usuarios para descargar la red central y reducir la latencia. Esta tesis aborda los desafíos anteriores que se detallan a continuación. Una característica común de los servicios 5G es la ubicuidad y la conexión casi permanente que se requiere para la red móvil. Esto impone un desafío en los procedimientos de señalización proporcionados para hacer un seguimiento de los usuarios y garantizar la continuidad de la sesión. Por lo tanto, los mecanismos de gestión de la movilidad desempeñarán un papel central en las redes 5G debido a la demanda de conectividad siempre activa. Distributed Mobility Management (DMM) ayuda a ir en esta dirección, al aplanar la red, lo que mejora su escalabilidad y permite el acceso local a Internet y a otros servicios de comunicaciones, como recursos en “nubes” situadas en el borde de la red móvil. Al mismo tiempo, SDN abre la posibilidad de ejecutar una multitud de aplicaciones inteligentes y avanzadas para optimizar la red en un controlador de red centralizado. La combinación de los principios arquitectónicos DMM con SDN aparece como una poderosa herramienta para que los operadores puedan hacer frente a la carga de administración y datos que se espera en las redes 5G. Para satisfacer la demanda futura de usuarios móviles a un coste reducido, los operadores también están buscando soluciones tales como C-RAN y diferentes divisiones funcionales para disminuir el coste de implementación y mantenimiento de emplazamientos celulares. El creciente estrés en el rendimiento del acceso a la radio móvil en un contexto de menores ingresos para los operadores requiere, por lo tanto, la evolución de las redes de transporte de backhaul y fronthaul, que actualmente funcionan disociadas. La heterogeneidad de los nodos y las tecnologías de transmisión que interconectan los segmentos de fronthaul y backhaul hacen que la red sea bastante compleja, costosa e ineficiente para gestionar de manera flexible y dinámica. De hecho, el uso de tecnologías heterogéneas obliga a los operadores a gestionar dos redes separadas físicamente, una para la red de backhaul y otra para el fronthaul. Para cumplir con los requisitos de 5G de manera rentable, se requiere una red de transporte única 5G que unifique los planos de control, datos y de gestión. Dicha red de transporte fronthaul/backhaul integrada, denominada “crosshaul”, transportará tráfico de fronthaul y backhaul operando sobre tecnologías heterogéneas de plano de datos, que están controladas por software para adaptarse a la demanda de capacidad fluctuante de las interfaces radio 5G. Además, las redes de transporte 5G necesitarán acomodar un amplio espectro de servicios sobre la misma infraestructura física y el network slicing se considera un candidato adecuado para proporcionar la calidad de servicio necesario. La diferenciación del tráfico generalmente se aplica en el borde de la red para garantizar un reenvío adecuado del tráfico según su clase a través de la red troncal. Con el networkslicing, el tráfico ahora puede atravesar muchos fronteras entre “network slices” donde la política de tráfico debe aplicarse, discriminarse y garantizarse, de acuerdo con las necesidades del servicio y de los usuarios. Sin embargo, el principio básico que hace posible esta gestión y operación eficientes de forma flexible – la centralización lógica – plantea importantes desafíos debido a la falta de herramientas de supervisión necesarias para las arquitecturas basadas en SDN. Para tomar decisiones oportunas y correctas mientras se opera una red, las aplicaciones de inteligencia centralizada necesitan alimentarse con un flujo continuo de estadísticas de red actualizadas. Sin embargo, esto no es factible con las soluciones SDN actuales debido a problemas de escalabilidad y falta de precisión. Por lo tanto, se requiere un sistema de telemetría adaptable para respaldar la diversidad de los servicios 5G y sus estrictos requisitos de tráfico. El camino hacia las redes inalámbricas 5G también presenta una tendencia clara de realizar acciones cerca de los usuarios finales. De hecho, acercar los contenidos, las aplicaciones y las funciones de red a los usuarios finales es necesario para hacer frente al enorme volumen de datos y la baja latencia requerida en las futuras redes 5G. Los paradigmas de “edge” y “fog” han surgido recientemente para abordar este desafío. Mientras que el edge está más centrado en la infraestructura y más orientado al operador móvil, el fog es más ubicuo e incluye cualquier nodo (fijo o móvil), incluidos los dispositivos finales. Al utilizar recursos de computación de propósito general en las proximidades de los usuarios, el edge y el fog pueden combinarse para construir una plataforma de computación, que también se puede utilizar para compartir información entre múltiples tecnologías de acceso radio (RAT) y, por lo tanto, abre una nueva dimensión de la integración multi-RAT.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Carla Fabiana Chiasserini.- Secretario: Vincenzo Mancuso.- Vocal: Diego Rafael López Garcí

    Management of Carrier Grade Intra-Domain Ethernet

    Get PDF
    Internet ei ole enää pelkkä tiedonlähde, vaan enenevässä määrin kriittisempi osa yhteiskunnan infrastruktuuria. Nykyiset Internet-palveluja tuottavat teknologiat - IPv4 osoitteistuksessa, MPLS siirtoalustana ja SDH fyysisenä välitysteknologiana - ovat alkaneet menettää valta-asemaansa samalla kun kaikille tuttu verkkoteknologia, Ethernet, on laajentunut lähiverkoista runkoverkkoihin. Maailmassa on miljoonia Ethernet-lähiverkkoja. Olisi kustannustehokaampaa toteuttaa myös näiden lähiverkkojen väliset siirtoyhteydet Ethernetillä. Halu kustannustehokkuuteen ja teknologian konsolidointiin on tuonut esille tarpeen ns. operaattorikestoisille Ethernet-palveluille. Koska Ethernetistä puuttuu määrättyjä ominaisuuksia joita ilman on mahdotonta toteuttaa siirtoverkkopalveluja, näitä operaattori-Ethernet-palveluja on tuotettu toistaiseksi olemassa olevilla tekniikoilla, kuten MPLS:llä. Tulevaisuudessa todellinen haaste on luoda operaattoritasoinen, Ethernet-pohjainen siirtoverkkoteknologia, joka kykenee tuottamaan Ethernet-palvelujen lisäksi mitä tahansa muita tietoliikennepalveluja. Tämä diplomityö käsittelee operaattoritasoisen Ethernetin hallintaa yhden runkoverkkoalueen sisällä. Työssä käydään läpi standardoidut operaattorikestoiset Ethernet-palvelut, teknologiat joilla palveluja tällä hetkellä tuotetaan, ehdokkaat tulevaisuuden Ethernet-siirtoverkkoteknologioiksi sekä keskeisimmät verkonhallintaan liittyvät standardit. Työn jälkimmäisessä puoliskossa esitellään Euroopan Unionin 7th Framework ETNA -projektia varten kehitetty verkonhallintajärjestelmä. Hallintajärjestelmä tarjoaa rajapinnan jonka kautta on mahdollista provisioida suojattuja Ethernet-palveluja kahden asiakasliityntäpisteen välillä, ja lisäksi lähetyspuita joissa kohteina on useampi asiakaspiste. Hallintajärjestelmältä tilatut palvelut viestitetään Ben Gurionin yliopiston toteuttaman, verkkoprosessoreilla toimivan välityskerroksen välitystauluihin.Internet is evolving from its role as a mere information provider to an ubiquitous infrastructure crucial to society. The current technologies running the majority of global Internet - IPv4 in addressing, MPLS as core transport and SDH as the physical transfer technology - have been long-lived. However, their dominance has started to diminish because a network technology common to all, Ethernet, has started to expand from local to metropolitan and wide area networks. Most enterprises and home users already use Ethernet in their LAN. Connecting these sites to MAN or WAN with the same technology is the logical next step in technology consolidation. This has raised the demand for Carrier Ethernet services. However, internally they are still mostly provided with non-Ethernet technologies such as MPLS or SDH, because currently Ethernet lacks the necessary service assurance components. The real challenge in future internetworking is creating a Carrier Ethernet Transport (CET). With CET, any imaginable telecommunication service is delivered with a purely Ethernet based technology. When we have Ethernet in transport networks, it is no more a long stretch to a global, routed end-to-end Ethernet. This thesis covers management of an intra-domain CET control plane. First, Carrier Ethernet services and technologies currently producing these services are analyzed. Second, requirements imposed to CET and current CET candidates are discussed. Third, network management standards and their alignment to carrier business is studied. After the background has been discussed, a control plane management system developed for the EU 7th framework ETNA project is introduced. The management system is capable of provisioning point-to-point and multipoint services and is controlled via a web-service -based northbound interface. The control plane is able to install the services as forwarding entries in a network processor -driven data plane developed at Ben Gurion University

    A survey of Virtual Private LAN Services (VPLS): Past, present and future

    Get PDF
    Virtual Private LAN services (VPLS) is a Layer 2 Virtual Private Network (L2VPN) service that has gained immense popularity due to a number of its features, such as protocol independence, multipoint-to-multipoint mesh connectivity, robust security, low operational cost (in terms of optimal resource utilization), and high scalability. In addition to the traditional VPLS architectures, novel VPLS solutions have been designed leveraging new emerging paradigms, such as Software Defined Networking (SDN) and Network Function Virtualization (NFV), to keep up with the increasing demand. These emerging solutions help in enhancing scalability, strengthening security, and optimizing resource utilization. This paper aims to conduct an in-depth survey of various VPLS architectures and highlight different characteristics through insightful comparisons. Moreover, the article discusses numerous technical aspects such as security, scalability, compatibility, tunnel management, operational issues, and complexity, along with the lessons learned. Finally, the paper outlines future research directions related to VPLS. To the best of our knowledge, this paper is the first to furnish a detailed survey of VPLS.University College DublinAcademy of Finlan

    A study of the applicability of software-defined networking in industrial networks

    Get PDF
    173 p.Las redes industriales interconectan sensores y actuadores para llevar a cabo funciones de monitorización, control y protección en diferentes entornos, tales como sistemas de transporte o sistemas de automatización industrial. Estos sistemas ciberfísicos generalmente están soportados por múltiples redes de datos, ya sean cableadas o inalámbricas, a las cuales demandan nuevas prestaciones, de forma que el control y gestión de tales redes deben estar acoplados a las condiciones del propio sistema industrial. De este modo, aparecen requisitos relacionados con la flexibilidad, mantenibilidad y adaptabilidad, al mismo tiempo que las restricciones de calidad de servicio no se vean afectadas. Sin embargo, las estrategias de control de red tradicionales generalmente no se adaptan eficientemente a entornos cada vez más dinámicos y heterogéneos.Tras definir un conjunto de requerimientos de red y analizar las limitaciones de las soluciones actuales, se deduce que un control provisto independientemente de los propios dispositivos de red añadiría flexibilidad a dichas redes. Por consiguiente, la presente tesis explora la aplicabilidad de las redes definidas por software (Software-Defined Networking, SDN) en sistemas de automatización industrial. Para llevar a cabo este enfoque, se ha tomado como caso de estudio las redes de automatización basadas en el estándar IEC 61850, el cual es ampliamente usado en el diseño de las redes de comunicaciones en sistemas de distribución de energía, tales como las subestaciones eléctricas. El estándar IEC 61850 define diferentes servicios y protocolos con altos requisitos en terminos de latencia y disponibilidad de la red, los cuales han de ser satisfechos mediante técnicas de ingeniería de tráfico. Como resultado, aprovechando la flexibilidad y programabilidad ofrecidas por las redes definidas por software, en esta tesis se propone una arquitectura de control basada en el protocolo OpenFlow que, incluyendo tecnologías de gestión y monitorización de red, permite establecer políticas de tráfico acorde a su prioridad y al estado de la red.Además, las subestaciones eléctricas son un ejemplo representativo de infraestructura crítica, que son aquellas en las que un fallo puede resultar en graves pérdidas económicas, daños físicos y materiales. De esta forma, tales sistemas deben ser extremadamente seguros y robustos, por lo que es conveniente la implementación de topologías redundantes que ofrezcan un tiempo de reacción ante fallos mínimo. Con tal objetivo, el estándar IEC 62439-3 define los protocolos Parallel Redundancy Protocol (PRP) y High-availability Seamless Redundancy (HSR), los cuales garantizan un tiempo de recuperación nulo en caso de fallo mediante la redundancia activa de datos en redes Ethernet. Sin embargo, la gestión de redes basadas en PRP y HSR es estática e inflexible, lo que, añadido a la reducción de ancho de banda debida la duplicación de datos, hace difícil un control eficiente de los recursos disponibles. En dicho sentido, esta tesis propone control de la redundancia basado en el paradigma SDN para un aprovechamiento eficiente de topologías malladas, al mismo tiempo que se garantiza la disponibilidad de las aplicaciones de control y monitorización. En particular, se discute cómo el protocolo OpenFlow permite a un controlador externo configurar múltiples caminos redundantes entre dispositivos con varias interfaces de red, así como en entornos inalámbricos. De esta forma, los servicios críticos pueden protegerse en situaciones de interferencia y movilidad.La evaluación de la idoneidad de las soluciones propuestas ha sido llevada a cabo, principalmente, mediante la emulación de diferentes topologías y tipos de tráfico. Igualmente, se ha estudiado analítica y experimentalmente cómo afecta a la latencia el poder reducir el número de saltos en las comunicaciones con respecto al uso de un árbol de expansión, así como balancear la carga en una red de nivel 2. Además, se ha realizado un análisis de la mejora de la eficiencia en el uso de los recursos de red y la robustez alcanzada con la combinación de los protocolos PRP y HSR con un control llevado a cabo mediante OpenFlow. Estos resultados muestran que el modelo SDN podría mejorar significativamente las prestaciones de una red industrial de misión crítica
    corecore