2,720 research outputs found

    Video summarisation: A conceptual framework and survey of the state of the art

    Get PDF
    This is the post-print (final draft post-refereeing) version of the article. Copyright @ 2007 Elsevier Inc.Video summaries provide condensed and succinct representations of the content of a video stream through a combination of still images, video segments, graphical representations and textual descriptors. This paper presents a conceptual framework for video summarisation derived from the research literature and used as a means for surveying the research literature. The framework distinguishes between video summarisation techniques (the methods used to process content from a source video stream to achieve a summarisation of that stream) and video summaries (outputs of video summarisation techniques). Video summarisation techniques are considered within three broad categories: internal (analyse information sourced directly from the video stream), external (analyse information not sourced directly from the video stream) and hybrid (analyse a combination of internal and external information). Video summaries are considered as a function of the type of content they are derived from (object, event, perception or feature based) and the functionality offered to the user for their consumption (interactive or static, personalised or generic). It is argued that video summarisation would benefit from greater incorporation of external information, particularly user based information that is unobtrusively sourced, in order to overcome longstanding challenges such as the semantic gap and providing video summaries that have greater relevance to individual users

    Spott : on-the-spot e-commerce for television using deep learning-based video analysis techniques

    Get PDF
    Spott is an innovative second screen mobile multimedia application which offers viewers relevant information on objects (e.g., clothing, furniture, food) they see and like on their television screens. The application enables interaction between TV audiences and brands, so producers and advertisers can offer potential consumers tailored promotions, e-shop items, and/or free samples. In line with the current views on innovation management, the technological excellence of the Spott application is coupled with iterative user involvement throughout the entire development process. This article discusses both of these aspects and how they impact each other. First, we focus on the technological building blocks that facilitate the (semi-) automatic interactive tagging process of objects in the video streams. The majority of these building blocks extensively make use of novel and state-of-the-art deep learning concepts and methodologies. We show how these deep learning based video analysis techniques facilitate video summarization, semantic keyframe clustering, and (similar) object retrieval. Secondly, we provide insights in user tests that have been performed to evaluate and optimize the application's user experience. The lessons learned from these open field tests have already been an essential input in the technology development and will further shape the future modifications to the Spott application

    Improving Sequential Determinantal Point Processes for Supervised Video Summarization

    Full text link
    It is now much easier than ever before to produce videos. While the ubiquitous video data is a great source for information discovery and extraction, the computational challenges are unparalleled. Automatically summarizing the videos has become a substantial need for browsing, searching, and indexing visual content. This paper is in the vein of supervised video summarization using sequential determinantal point process (SeqDPP), which models diversity by a probabilistic distribution. We improve this model in two folds. In terms of learning, we propose a large-margin algorithm to address the exposure bias problem in SeqDPP. In terms of modeling, we design a new probabilistic distribution such that, when it is integrated into SeqDPP, the resulting model accepts user input about the expected length of the summary. Moreover, we also significantly extend a popular video summarization dataset by 1) more egocentric videos, 2) dense user annotations, and 3) a refined evaluation scheme. We conduct extensive experiments on this dataset (about 60 hours of videos in total) and compare our approach to several competitive baselines

    Smartphone picture organization: a hierarchical approach

    Get PDF
    We live in a society where the large majority of the population has a camera-equipped smartphone. In addition, hard drives and cloud storage are getting cheaper and cheaper, leading to a tremendous growth in stored personal photos. Unlike photo collections captured by a digital camera, which typically are pre-processed by the user who organizes them into event-related folders, smartphone pictures are automatically stored in the cloud. As a consequence, photo collections captured by a smartphone are highly unstructured and because smartphones are ubiquitous, they present a larger variability compared to pictures captured by a digital camera. To solve the need of organizing large smartphone photo collections automatically, we propose here a new methodology for hierarchical photo organization into topics and topic-related categories. Our approach successfully estimates latent topics in the pictures by applying probabilistic Latent Semantic Analysis, and automatically assigns a name to each topic by relying on a lexical database. Topic-related categories are then estimated by using a set of topic-specific Convolutional Neuronal Networks. To validate our approach, we ensemble and make public a large dataset of more than 8,000 smartphone pictures from 40 persons. Experimental results demonstrate major user satisfaction with respect to state of the art solutions in terms of organization.Peer ReviewedPreprin

    Deep Learning for Semantic Video Understanding

    Get PDF
    The field of computer vision has long strived to extract understanding from images and videos sequences. The recent flood of video data along with massive increments in computing power have provided the perfect environment to generate advanced research to extract intelligence from video data. Video data is ubiquitous, occurring in numerous everyday activities such as surveillance, traffic, movies, sports, etc. This massive amount of video needs to be analyzed and processed efficiently to extract semantic features towards video understanding. Such capabilities could benefit surveillance, video analytics and visually challenged people. While watching a long video, humans have the uncanny ability to bypass unnecessary information and concentrate on the important events. These key events can be used as a higher-level description or summary of a long video. Inspired by the human visual cortex, this research affords such abilities in computers using neural networks. Useful or interesting events are first extracted from a video and then deep learning methodologies are used to extract natural language summaries for each video sequence. Previous approaches of video description either have been domain specific or use a template based approach to fill detected objects such as verbs or actions to constitute a grammatically correct sentence. This work involves exploiting temporal contextual information for sentence generation while working on wide domain datasets. Current state-of- the-art video description methodologies are well suited for small video clips whereas this research can also be applied to long sequences of video. This work proposes methods to generate visual summaries of long videos, and in addition proposes techniques to annotate and generate textual summaries of the videos using recurrent networks. End to end video summarization immensely depends on abstractive summarization of video descriptions. State-of- the-art neural language & attention joint models have been used to generate textual summaries. Interesting segments of long video are extracted based on image quality as well as cinematographic and consumer preference. This novel approach will be a stepping stone for a variety of innovative applications such as video retrieval, automatic summarization for visually impaired persons, automatic movie review generation, video question and answering systems

    Video matching using DC-image and local features

    Get PDF
    This paper presents a suggested framework for video matching based on local features extracted from the DCimage of MPEG compressed videos, without decompression. The relevant arguments and supporting evidences are discussed for developing video similarity techniques that works directly on compressed videos, without decompression, and especially utilising small size images. Two experiments are carried to support the above. The first is comparing between the DC-image and I-frame, in terms of matching performance and the corresponding computation complexity. The second experiment compares between using local features and global features in video matching, especially in the compressed domain and with the small size images. The results confirmed that the use of DC-image, despite its highly reduced size, is promising as it produces at least similar (if not better) matching precision, compared to the full I-frame. Also, using SIFT, as a local feature, outperforms precision of most of the standard global features. On the other hand, its computation complexity is relatively higher, but it is still within the realtime margin. There are also various optimisations that can be done to improve this computation complexity

    Convolutional Hierarchical Attention Network for Query-Focused Video Summarization

    Full text link
    Previous approaches for video summarization mainly concentrate on finding the most diverse and representative visual contents as video summary without considering the user's preference. This paper addresses the task of query-focused video summarization, which takes user's query and a long video as inputs and aims to generate a query-focused video summary. In this paper, we consider the task as a problem of computing similarity between video shots and query. To this end, we propose a method, named Convolutional Hierarchical Attention Network (CHAN), which consists of two parts: feature encoding network and query-relevance computing module. In the encoding network, we employ a convolutional network with local self-attention mechanism and query-aware global attention mechanism to learns visual information of each shot. The encoded features will be sent to query-relevance computing module to generate queryfocused video summary. Extensive experiments on the benchmark dataset demonstrate the competitive performance and show the effectiveness of our approach.Comment: Accepted by AAAI 2020 Conferenc
    corecore