3,262 research outputs found

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    The Power of Dynamic Distance Oracles: Efficient Dynamic Algorithms for the Steiner Tree

    Get PDF
    In this paper we study the Steiner tree problem over a dynamic set of terminals. We consider the model where we are given an nn-vertex graph G=(V,E,w)G=(V,E,w) with positive real edge weights, and our goal is to maintain a tree which is a good approximation of the minimum Steiner tree spanning a terminal set SVS \subseteq V, which changes over time. The changes applied to the terminal set are either terminal additions (incremental scenario), terminal removals (decremental scenario), or both (fully dynamic scenario). Our task here is twofold. We want to support updates in sublinear o(n)o(n) time, and keep the approximation factor of the algorithm as small as possible. We show that we can maintain a (6+ε)(6+\varepsilon)-approximate Steiner tree of a general graph in O~(nlogD)\tilde{O}(\sqrt{n} \log D) time per terminal addition or removal. Here, DD denotes the stretch of the metric induced by GG. For planar graphs we achieve the same running time and the approximation ratio of (2+ε)(2+\varepsilon). Moreover, we show faster algorithms for incremental and decremental scenarios. Finally, we show that if we allow higher approximation ratio, even more efficient algorithms are possible. In particular we show a polylogarithmic time (4+ε)(4+\varepsilon)-approximate algorithm for planar graphs. One of the main building blocks of our algorithms are dynamic distance oracles for vertex-labeled graphs, which are of independent interest. We also improve and use the online algorithms for the Steiner tree problem.Comment: Full version of the paper accepted to STOC'1

    Von Neumann Entropy Penalization and Low Rank Matrix Estimation

    Get PDF
    A problem of statistical estimation of a Hermitian nonnegatively definite matrix of unit trace (for instance, a density matrix in quantum state tomography) is studied. The approach is based on penalized least squares method with a complexity penalty defined in terms of von Neumann entropy. A number of oracle inequalities have been proved showing how the error of the estimator depends on the rank and other characteristics of the oracles. The methods of proofs are based on empirical processes theory and probabilistic inequalities for random matrices, in particular, noncommutative versions of Bernstein inequality

    On monotone circuits with local oracles and clique lower bounds

    Get PDF
    We investigate monotone circuits with local oracles [K., 2016], i.e., circuits containing additional inputs yi=yi(x)y_i = y_i(\vec{x}) that can perform unstructured computations on the input string x\vec{x}. Let μ[0,1]\mu \in [0,1] be the locality of the circuit, a parameter that bounds the combined strength of the oracle functions yi(x)y_i(\vec{x}), and Un,k,Vn,k{0,1}mU_{n,k}, V_{n,k} \subseteq \{0,1\}^m be the set of kk-cliques and the set of complete (k1)(k-1)-partite graphs, respectively (similarly to [Razborov, 1985]). Our results can be informally stated as follows. 1. For an appropriate extension of depth-22 monotone circuits with local oracles, we show that the size of the smallest circuits separating Un,3U_{n,3} (triangles) and Vn,3V_{n,3} (complete bipartite graphs) undergoes two phase transitions according to μ\mu. 2. For 5k(n)n1/45 \leq k(n) \leq n^{1/4}, arbitrary depth, and μ1/50\mu \leq 1/50, we prove that the monotone circuit size complexity of separating the sets Un,kU_{n,k} and Vn,kV_{n,k} is nΘ(k)n^{\Theta(\sqrt{k})}, under a certain restrictive assumption on the local oracle gates. The second result, which concerns monotone circuits with restricted oracles, extends and provides a matching upper bound for the exponential lower bounds on the monotone circuit size complexity of kk-clique obtained by Alon and Boppana (1987).Comment: Updated acknowledgements and funding informatio
    corecore